

Model-Based Optimal Control of An

Underground Heating System

Erin Brown 201919578

Kaloyan Domuschiev 201937542

Malcolm Irving-Robertson 201927466

Supervisor: Eero Immonen

A thesis submitted in partial fulfilment of

the requirements of the MEng Aero-

Mechanical Engineering Course

8th January 2024

Word Count: 21,494

Executive Summary

Introduction and Background
Countries with colder climates experience snow cover for several months out

of the year. Underground heating is a robust solution allowing football and

other sports pitches to maintain adequate playing conditions year-round.

However, energy costs are at an all-time high, so it is more important than

ever to be energy efficient, without compromising the results of snowmelt.

This report outlines the work and findings of the Aero-Mechanical

Engineering 5th Year Master’s Group Project titled “Model-Based Optimal

Control of An Underground Heating System”. The work undertaken further

refined an existing dynamical snow melt model first developed in the 2023

Computational Engineering and Analysis (COMEA) paper, “A computational

model for underground heating control of outdoor sports fields in winter

conditions”, [1], with a more detailed description of the physics of snow and

the heat and mass transfer as it melts. It aimed not only to refine the

dynamical snow melting model based on the COMEA approach, but also to

establish a computational methodology for optimising the operation of an

underfloor heating system for a 7-day weather forecast.

Methodology

Refinement of Computational Model

To improve the heating system computational model’s ability to accurately

predict snow depth, a more detailed description of the physics of snow, and

the heat and mass transfer processes was developed. Consideration of the

effects that underground moisture transfer has on the system took place

through an extensive fluid study. 4 iterations of moisture simulations were

created with increasingly realistic attributes, using Ansys Fluent. At each

iteration, changes to geometry, boundary conditions or patching conditions

took the simulation a step closer to a realistic depiction of moisture transport.

The time delay of the water-propyleneglycol fluid within the underground pipe

network was studied, and the effect on the overall heat transfer model was

determined. Ambient temperature, mass flow rate of the solution through the

network, and temperature difference induced by the pump were all

investigated as part of this study and were found to have significant

implications on the imbalance in temperature distribution, with sections

furthest away from the inlet taking substantially longer to reach the desired

temperature for melting of the accumulated snow.

A detailed comparison of the 2007 Liu et. al paper [2] was included, which

discussed the differences between both computational models. Some

differences discussed were incorporated into the newly improved model,

such as the inclusion of the effects of evaporation and condensation within

the snowpack.

Sensitivity Analysis

Sensitivity analyses were conducted, first studying the impact different

variables had on the model’s prediction of snow depth. These were selected

on the merit of being more obscure parameters, which are often difficult to

measure in real life, such as radiation from surface emissivity. This allowed

the importance of each variable to the prediction to be reviewed.

Secondly, alternative numerical schemes such as implicit and predictor-

corrector were trialled, to determine if they would produce more accurate

predictions of snow depth compared to the existing explicit scheme.

Lastly, the effect of different time step sizes was tested for improving the

accuracy of the model whilst still retaining acceptable computational times.

Several cases were considered with values both bigger and smaller than the

original time step of 60 seconds. The results were compared to determine the

most suitable configuration.

Design of Experiments

To begin the process of establishing optimal system control conditions for a

given weather forecast, a Design-of-Experiments was conducted through

Latin Hypercube Sampling (LHS). From this, randomly generated weather

data and control inputs were created. The computational model ran for a

forecast of 7 days, and the final snow depth and energy use for each

scenario were recorded, assuming the weather and control inputs were

constant over this time. This process was repeated for 𝑁 number of weeks

which allowed for large samples of weather data to be created which were

used to replicate real life weather trends. The results the LHS produced were

used in a regression decision tree model to determine the most suitable

control inputs for different weather situations and trends. The purpose of

conducting this was to achieve optimal playing conditions of snow depth ≤

1mm whilst minimising energy consumption. LHS was again used to

generate a set of weather and control inputs for the complicated machine

learning algorithm development.

Decision Tree

The development of the decision tree algorithm was carried out in2 stages.

Initially, the algorithm was trained on the data produced in the Design-of-

Experiments and used to predict whether the randomly sampled control

inputs would achieve playing conditions after 1 week of operation. This was

followed by the inclusion of a more complicated machine learning approach,

which involved training a new decision tree with only scenarios that would

generate optimal conditions. It was then tasked with predicting the control

inputs required for a new set of weather scenarios. This progressed the

accuracy of the optimal controls to more refined and specific weather

conditions beyond the threshold of the initial decision tree.

Results and Discussion

Refinement of Computational Model

Snow depth was predicted from the computational model and compared with

real life weather data provided by the Finnish Meteorological Institute. The

aim was to refine and improve the computational model in a way which

predicted the snow depth with high accuracy and high precision.

The results of the moisture study found that from the final iteration of

simulations, the movement of moisture in soil under the pitch was

insignificant and therefore the effect on thermal properties could be deemed

negligible. The results of the final iteration were recorded and an example of

the area-weighted average temperature [K] under the pitch is shown below in

Figure 1.

Figure 1: Moisture Transport Final Iteration Temperature Results Example – Increasing Porosity

Assuming that the initial area-weighted average temperature of the soil cross

section beneath the pitch was an ambient temperature of 276K, and that

water entering this zone horizontally was 275.5K (as rain is often colder than

ambient temperatures), the soil average temperature settled at a constant of

0.028K lower than when dry. This observation alongside the pitch size and

cross-sectional averaging of pitch properties, resulted in the decision to deem

moisture transport impact as negligible.

The results from the inclusion of time delay imbalance found that although

small, the effect was positive and improved the overall accuracy of the

prediction of snow depth.

Finally, it was also found that the effect that the incorporation of features from

[2], while also small, were again beneficial to the overall accuracy of the

snow depth prediction.

Sensitivity Analysis

The results of the variable study sensitivity analysis found that snow thermal

conductivity had the greatest impact on snow depth prediction and air density

had the least impact. The variables were ranked by impact on the predictive

power of the python model, which was visualised using hex-graphs. When

altered, none of the included variables produced a situation where no change

was visible in the results. For this reason, all variables remained in the model

after the Sensitivity Analysis.

Results of the comparison between different numerical schemes found that

both implicit and predictor-corrector schemes failed to show meaningful

improvements in the current computational model and therefore an explicit

scheme was retained for the improved model.

A study conducted on the effect of time step size found that reducing the step

size from 60 minutes to 20 minutes significantly improved the computational

accuracy whilst still retaining an acceptable computational time. Further

reductions in the step size showed some incremental improvements but were

ultimately deemed unnecessary due to the large increase in computational

time.

The snow depth predictions compared to the snow depth measured, in

meters, that the original model produced are shown in Figure 2. The

improvements made to the model predictions can be clearly shown in Figure

3, which includes additional refinements such as consideration of the time-

delay within the underground heated pipes, the inclusion of features from the

pavement paper and a reduced time step size of 20 minutes.

Figure 2: Original Model Snow Depth Predictions

Figure 3: Improved Model Snow Depth Predictions

Optimal Control Guidance Document

The development of the LHS weather data and decision tree model allowed

for a guidance document to be created. This document would be used by a

human non-specialist operator who would be responsible for setting the

control values of the underground heating system. The decision tree was

trained to determine optimal control inputs for different weather scenarios.

These weather trends and control values were simplified and presented in

the form of the ‘rule of thumb’ document, which allowed the operator to set

approximate optimal control inputs based on current weather conditions such

as air temperature and snow depth.

During the analysis of the decision tree output, it was concluded that air

temperature and precipitation amount were the 2 most important factors in

determining whether snowfall would occur and were therefore taken as the

leading choices in the guidance document. Every element was connected by

a Yes/No choice to the rest of the branches, to make using the document as

simple as possible. At the beginning of every branch, the air temperature is

assessed. Once a suitable range has been selected, the next leaf in the

branch can be followed. This was most commonly Precipitation Amount;

however, other cases were included to allow situations where no snowfall is

currently occurring, but snow cover is still present to be captured. For

simplicity, the guidance document was limited to 2 weather parameter

choices, based on which a suitable range of control inputs was

recommended.

The complicated machine learning approach aimed to further the accuracy of

the optimal control input variables for all possible weather situations. A more

detailed optimal control guidance document was created. This could be built

on in future work by producing a full and extensive operative guidance

document, far beyond the scope of the guidance required within this project.

Cost Analysis

A review of the potential savings that could be made using full optimal

control, over an example 3-month period, gave a value of €2222.50. This was

calculated using the average cost of energy in Finland at that time of year,

comparing the energy consumption for an optimal case to a standard

operation case.

Conclusions and Recommendations

The aim of this report was to implement improvements to a computational

model for the forecasting of snowfall and to predict the required control inputs

to achieve playing conditions with minimum energy consumption.

Recommendations for possible future research aims based on the work

undertaken are discussed below.

While the effects of wind speed were negated in the calculations carried out

as part of this report, based on previous studies conducted for building

rooftops, further work could be carried out in designing a large-scale

simulation representing the football field and surrounding area to confirm this

negation and assess the true impact of interference by the nearby buildings

and trees.

Simplifications were also made to the snowpack classification, including only

the 4 major categories. In reality, a snowpack could consist of a number of

different snow types, therefore the inclusion of multi-phase snowpacks in the

heat and mass balance equations could contribute to further improvements in

the accuracy of the melting model.

Moisture Transport under the pitch was ultimately found to have minimal

effect on the heat and mass balance calculations, however the study could

be adapted to other situations, for example where the surface is not

impermeable. This, alongside simulating the transport of mass in the form of

particles in the soil or comparing results between different turbulence models

in place of laminar flow could pave the way for greater understanding of the

behaviour of moisture in different soil types.

The implementation of a pandapipes model provided good estimations of the

time-delay in transportation of the fluid within the network, however the

limitations of the model did not allow for all the properties of the surrounding

soil to be included. A large-scale model in software such as ANSYS, while

highly computationally intensive, could allow for very refined calculations and

better visualisation of the fluid movement in the pipes once the initial

parameters have been determined using the pandapipes network.

Simple ‘Rule-of-Thumb’ guidance was developed for setting the temperature

difference and liquid solution flow rate based on a range of weather

parameters. This was presented in the form of a document which could be

used by a non-specialist operator to set the appropriate range. Due to time

constraints and being out with the scope of the project, precise optimal

control guidance was only developed for 30 nodes. This provided the exact

setting which should be used in a particular case rather than a range. This

could be expanded, for example using other machine learning methods used

in conjunction with Deep Learning to process the large decision tree output

and group the corresponding branches for a much wider selection of weather

conditions.

For the Design-of-Experiments, the random sampling process was simplified

by fixing the values of the weather parameters and control inputs for the full

1-week duration of the simulation, at the end of which the values of snow

depth and energy consumption could be retrieved. Further improvements

could be made to the model though the inclusion of non-constant weather

data to reflect the real-world conditions more accurately.

The model utilised as part of this project was designed considering the

specific geometry and location of the field in Naantali, Finland. In this case,

the optimisation recommended was estimated to contribute to savings of up

to €2222.50 over the 3 month period simulated. Simple modifications to the

model could make it relevant to other locations.

Applications also exist beyond the realm of sports, and the technology and

model could be utilised in the maintenance of other public spaces and

infrastructure. Further work could be undertaken in adapting the model for

applications in those areas, reducing the need for polluting snow clearing

vehicles and other de-icing methods.

To conclude, the work undertaken to refine the dynamical snow melting

model improved the overall accuracy of the prediction of snow depth greatly

when compared with real life weather data for a 3-month period. The

operation of the heating system was optimised for 1-week periods such that

guidance could be drafted to recommend control inputs which ensure the

field is kept at playing conditions, with minimum energy expenditure.

Acknowledgements

Throughout the completion of this project, and the writing of this report our

team could not have achieved what we have without the support and

assistance of so many.

Firstly, we would like to express our thanks and appreciation to our project

supervisor Eero Immonen for his support and guidance throughout this entire

project. His insights were invaluable in many aspects of our research and

project development.

Secondly, we would like to thank the research associates of the

Computational Engineering and Analysis (COMEA) research team at Turku

University of Applied Sciences. Specifically, we would like to give

appreciation to Fatemeh Ardaneh, Ashvin Chaudhari and Sajad Shahsavari.

We are extremely grateful for the support and ongoing feedback throughout

our project.

Lastly, we are thankful to all at Turku University of Applied Sciences for

welcoming us into their university and allowing our exchange experience to

be extremely rewarding and an experience to remember. The welcoming

environment and range of facilities at the university allowed for our team to

achieve and produce work at this high level.

Abstract
The purpose of this paper was to improve upon modelling work, began in the

2023 Computational Engineering and Analysis paper, “A computational

model for underground heating control of outdoor sports fields in winter

conditions”, [1], with a more detailed description of the physics of snow and

the heat and mass transfer as it melts. Following from the refinement of the

dynamical snow melting model based on the COMEA approach, the aim was

to establish a computational methodology for optimising the operation of the

underfloor heating system for 7 days ahead of the predicted weather

forecast.

This report includes a breakdown of the thermodynamic processes and heat

and mass transfer occurring in a snowpack on the surface of a heated

football pitch, for a 3-month period. Potential improvements to the previous

computational model were investigated through the incorporation of the

transportation of moisture in soil under the ground, the time delay imbalance

of the water-propyleneglycol transport in the heated pipes and the

incorporation and comparison of additional features from a similar model.

It was found that the movement of moisture in soil under the ground was

insignificant and therefore could be deemed negligible. However, it was

found that although small, the effect that the inclusion of time delay

imbalance and incorporation of features from [2] were positive and improved

the overall accuracy of the prediction of snow depth.

Several sensitivity analyses took place, first showcasing the impact of

different variables on the final prediction, with Snow Thermal Conductivity

having the greatest impact. The effect of time step size was also investigated

to find an appropriate value which could improve the accuracy of the model

while still retaining acceptable computational times. The use of different

numerical schemes, namely implicit and predictor-corrector was also

explored. Results found that both schemes failed to improve on the current

computational model so the explicit scheme was retained in the improved

model.

To establish an optimal heating system for a given weather forecast a

Design-of-Experiments was conducted through Latin Hypercube Sampling

(LHS). The results the LHS algorithm produced were used within a decision

tree to determine optimal control inputs for different weather situations and

trends. The purpose of conducting this was to develop an operational

methodology that achieves optimal playing conditions of snow depth ≤ 1mm

whilst minimising energy consumption.

The development of the decision trees was followed by the inclusion of a

more complicated machine learning approach which progressed the

accuracy of the optimal controls to more refined and specific weather

conditions beyond the threshold of the decision tree.

The real-life applications of the research discussed in this report are greater

than just artificial grass football pitches. Heavy snow creates challenges in

many aspects of life in a cold climate, therefore the system has applicability

in infrastructure projects such as heated pavements, train tracks and airport

runways.

Contents
1.0 Introduction .. 1

1.1 Background ... 1

1.2 Objectives ... 1

1.3 Report Structure ... 3

1.4 Project Scope ... 3

2.0 Literature Review ... 4

2.1 Original Model ... 4

2.2 Alternative Computational Models .. 6

2.2.1 Utah Model ... 6

2.2.2 Comparison of the Heated Pavement Model 6

2.3 Heat and Mass Transfer Equations .. 7

2.4 Underground Heating Using Electrodes.. 10

2.5 Time Delay Imbalance .. 11

2.6 Moisture Transport .. 13

2.7 Snow Classifications ... 14

2.8 Latin Hypercube Sampling .. 15

2.9 Digital Twins ... 16

2.10 Machine Learning .. 17

2.10.1 Regression and Classification ... 17

2.10.2 Training and Testing ... 17

2.10.3 Machine Learning Models ... 18

2.10.4 Decision Trees .. 19

3.0 Methodology .. 22

3.1 Thermodynamic Processes .. 22

3.2 Melting Model Refinement .. 23

3.2.1 Introduction to Moisture Transport Simulation 23

3.2.2 Moisture Transport Iteration 1 .. 24

3.2.3 Moisture Transport Iteration 2 .. 24

3.2.4 Moisture Transport Iteration 3 .. 26

3.2.5 Moisture Transport Iteration 4 .. 26

3.2.6 Time Delay ... 27

3.2.7 Incorporation of the Heated Pavement Model 30

3.2.8 Negation of Snow Distribution .. 33

3.3 Sensitivity Analysis ... 34

3.3.1 Variable Study .. 34

3.3.2 Implicit and Predictor-Corrector Method 35

3.3.3 Variation of Time Step Size .. 37

3.4 Optimisation of Heating System Operating Profile 37

3.4.1 Design of Experiments ... 37

3.4.2 Decision Trees ... 38

3.4.3 Finding True Optimal Results ... 42

4.0 Results and Discussion .. 44

4.1 Moisture Transport .. 44

4.1.1 Choosing a Suitable Depth of Soil .. 44

4.1.2 Iteration 2 Results .. 44

4.1.3 Iteration 3 Results .. 51

4.1.4 Iteration 4 Results .. 53

4.2 Time Delay Imbalance .. 56

4.3 Evaporation and Condensation ... 58

4.4 Comparison To Existing Code .. 61

4.5 Sensitivity Analysis ... 63

4.5.1 Variable Study .. 63

4.5.2 Implicit and Predictor-Corrector Method 66

4.5.3 Variation of Time Step Size .. 67

4.6 Latin Hypercube Sampling .. 70

4.7 Optimal Control Guidance Document ... 71

4.8 True Optimal Control... 78

4.9 Cost Analysis .. 84

4.10 Recommendations For Future Work .. 84

5.0 Conclusions ... 87

6.0 References ... 92

7.0 Appendices .. 98

7.1 Appendix A1 – Reflective Report .. 98

7.2 Appendix A2 – Gantt Chart ... 109

7.3 Appendix B – Average Wind Speed .. 110

7.4 Appendix C – URL for Finnish Meteorological Institute Website

(Download Observations) ... 111

7.5 Appendix D – Graphviz Data for Optimal Control Decision Tree .. 112

7.6 Appendix E – Python Code: 𝑳𝑯𝑺_𝑳𝒐𝒐𝒑. 𝒑𝒚 132

7.7 Appendix F – Python Code: 𝑭𝒖𝒍𝒍_𝑺𝒄𝒂𝒍𝒆_𝑵𝒆𝒕𝒘𝒐𝒓𝒌. 𝒑𝒚 136

7.8 Appendix G – Python Code: Original .. 139

7.9 Appendix H – General Guidance to Project Code 157

7.10 Appendix I – Simulation Full Worked Example 161

Table of Figures
Figure 1: Schematic Overview of the Heating System 5

Figure 2: Measured and predicted snow depths (solid lines) and measured

rainfall (dashed line). .. 10

Figure 3: Temperature-Time Delay in a Pipe Section 11

Figure 4: 4x4 Latin Square Design ... 15

Figure 5: Latin Hypercube Design with 3 Factors and 6 Design Points 16

Figure 6: Decision Tree of 3 Numbers ... 20

Figure 7: Simplified Phase Diagram of System .. 22

Figure 8: Side Profile View of Slope of Pitch (Not to Scale) 23

Figure 9: Geometry of 2nd Iteration Simulation ... 25

Figure 10: Contour of Water Volume Fraction for a Fully Saturated Case at

Flow Time 0s.. 25

Figure 11: Geometry of 4th Iteration Simulation ... 27

Figure 12: Simple Schematic of Pipe Network System 28

Figure 13: Pressure Losses in Pipe Bends .. 29

Figure 14: Python code excerpt of Equation [20] ... 30

Figure 15: Python code excerpt containing 𝑄𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 in the heat balance.

 ... 31

Figure 16: Snowpack Classification Before Melting 31

Figure 17: Snowpack Classification After Melting .. 32

Figure 18: Python code excerpt with Counters for Snow Type 33

Figure 19: Python code excerpt of Sensitivity Analysis Values 34

Figure 20: Python code excerpt of Sensitivity Analysis Results and Plotting 35

Figure 21: Python code excerpt of a Predictor Corrector function................ 36

Figure 22: Python code excerpt of an Implicit function 37

Figure 23: Python code excerpt of Decision Tree Training 40

Figure 24: Example of a Decision Tree Flow Chart 41

Figure 25: Python code excerpt for the True Optimal Control Decision Tree 43

Figure 26: Outer Soil Water Fraction Report for 2m Depth 44

Figure 27: Outer Soil Water Fraction Report for 7m Depth 44

Figure 28: Area Weighted Average Water Content of the Inner Soil Zone at

0Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) 45

Figure 29: Area Weighted Average Thermal Conductivity of the Inner Soil

Zone at 0Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) .. 45

Figure 30: Area Weighted Average Temperature of the Inner Soil Zone at

0Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) 45

Figure 31: Area Weighted Average Water Content of the Inner Soil Zone at

50Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) 46

Figure 32: Area Weighted Average Thermal Conductivity of the Inner Soil

Zone at 50Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) 46

Figure 33: Area Weighted Average Temperature of the Inner Soil Zone at

50Pa Gauge Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration) 46

Figure 34: Inner Soil Volume Report for 0Pa Case 47

Figure 35: Inner Soil Volume Report for Solid Wall Case 47

Figure 36: Python code excerpt of Moisture Transport Thermal Property

Updates (Part 1) ... 50

Figure 37: Python code excerpt of Moisture Transport Thermal Property

Updates (Part 2) ... 50

Figure 38: Python code excerpt for Moisture Transport Thermal Property

Updates (Part 3) ... 51

Figure 39: Python code excerpt for Moisture Transport Thermal Property

Updates (Part 4) ... 51

Figure 40: Water Content 0Pa Case .. 52

Figure 41: Water Content 5000Pa Case .. 52

Figure 42: Water Content 10000Pa Case .. 52

Figure 43: Water Content Solid Wall Case .. 52

Figure 44: Area Weighted Average Water Content for Decreasing Porosity 53

Figure 45: Area Weighted Average Temperature for Decreasing Porosity .. 53

Figure 46: Area Weighted Average Water for Constant Porosity 54

Figure 47: Area Weighted Average Temperature for Constant Porosity 54

Figure 48: Area Weighted Average Water Content for Increasing Porosity . 54

Figure 49: Area Weighted Average Temperature for Increasing Porosity 55

Figure 50: Temperature Variation at Exit Junction 56

Figure 51: Measured and Predicted Snow Depth [Without 𝑄𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑] 59

Figure 52: Measured and Predicted Snow Depth [With 𝑄𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑] 59

Figure 53: Measured and Predicted Temperature [Without 𝑄𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑] ... 60

Figure 54: Measured and Predicted Temperature [With 𝑄𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑] 60

Figure 55: Original Code Predictions for 2021 Data 61

Figure 56: Modified Code Predictions for 2021 Data 61

Figure 57: Original Code Predictions for 2023 Data 62

Figure 58: Modified Code Predictions for 2023 Data 62

Figure 59: Explicit Method ... 66

Figure 60: Implicit Method .. 67

Figure 61: Predictor-Corrector Method .. 67

Figure 62: Measured and Predicted Snow Depths for a Time Step = 60

minutes .. 68

Figure 63: Measured and Predicted Snow Depths for a Time Step = 125

minutes .. 69

Figure 64: Measured and Predicted Snow Depths for a Time Step = 20

minutes .. 69

Figure 65: Measured and Predicted Snow Depths for a Time Step = 8

minutes .. 69

Figure 66: Yellow Rhombus, Start Point .. 72

Figure 67: Pink Rounded Rectangle, End Point ... 72

Figure 68: Optimal Control Guidance Document Page 1 74

Figure 69: Optimal Control Guidance Document Page 2 75

Figure 70: Optimal Control Guidance Document Page 3 76

Figure 71: Complicated Optimal Control Guidance Page 1 80

Figure 72: Complicated Optimal Control Guidance Page 2 81

Figure 73: Complicated Optimal Control Guidance Page 3 82

https://strath-my.sharepoint.com/personal/erin_brown_2019_uni_strath_ac_uk/Documents/Masters%20Project/Final_Report.docx#_Toc155528639
https://strath-my.sharepoint.com/personal/erin_brown_2019_uni_strath_ac_uk/Documents/Masters%20Project/Final_Report.docx#_Toc155528642

Figure 74: Poster from Turku AMK Event .. 102

Figure 75: Group Presentation at Turku AMK Event 103

Figure 76: Group Turku 1 in Norway .. 107

Figure 77: Predicted and Measured Snow Depth 158

Figure 78: Temperature Variations in Different Layers 158

Figure 79: Formatted Weather Data .. 159

Figure 80: Implementation of Ranking System .. 160

Figure 81: Weather Format End Result Example CSV 162

Table of Tables
Table 1: Description of Model Layers ... 4

Table 2: Classifications of Snow .. 14

Table 3: Input Parameters for Time-Delay Simulation 29

Table 4: Water Volume Fraction by Case, with Corresponding Property

Changes, over 1 hour .. 48

Table 5: Scaled Water Volume Fraction and Property Changes for 0Pa 48

Table 6: Scaled Water Volume Fraction and Property Changes for Solid Wall

 ... 49

Table 7: Impact of Ambient Temperature on Time-Delay 56

Table 8: Impact of Mass Flow Rate on Time-Delay 57

Table 9: Impact of Temperature Difference Between Inlet and Outlet on

Time-Delay... 57

Table 10: Result Plots of Sensitivity Analysis .. 63

Table 11: Results of Variables Study Ranked from Most to Least Sensitive 65

Table 12: Variation of Time Step Size with Computational Run Time 68

Table 13: LHS Results for 10 Weeks ... 70

Table 14: Mean Absolute Error Values for Optimal Control Decision Tree .. 78

Table 15: True Optimal Control Values for 10 Iterations 79

Table 16: Possible Future Actions ... 108

Nomenclature

Symbol Description Units

𝐴𝑥𝑦 Area of Football Pitch [𝑚2]

𝐿𝑒𝑓𝑓 Characteristic Length for a Rectangular Field
Surface Section

[𝑚]

𝐶 Cloudiness Ratio

ℎ Convection Heat Transfer Coefficient [𝑊/𝑚2𝐶𝑜]
𝑄 Darcy Flow Rate [𝑐𝑚3/𝑠]

𝜌 Density [𝑘𝑔/𝑚3]

𝑧 Depth Underground [𝑚]

𝜇 Dynamic Viscosity of Fluid in Pipe [𝑃𝑎 𝑠]

𝐸𝑅 Energy Ratio

𝐸𝑢 Euler Number

𝜀 Ground Surface Emissivity

𝑄̇ Heat Transfer [𝑊]

𝑤 Humidity Ratio, 𝑘𝑔 (𝑣𝑎𝑝𝑜𝑟) / 𝑘𝑔 (𝑑𝑟𝑦 𝑎𝑖𝑟)

𝑈 Internal Energy of Snowpack [𝑘𝐽𝑚−2]

ℎ𝐿𝑉 Latent Heat of Vaporization of Water [𝑘𝐽/𝑘𝑔]
𝑚̇ Mass Flow Rate [𝑘𝑔/𝑠]

𝜈 Momentum Diffusivity (Kinematic Viscosity) [𝑚2/𝑠]

𝑁𝑢 Nusselt Number

𝑞̇ Per-area Heat Flux [𝑊/𝑚2]
𝐾 Permeability of the Medium [𝜇𝑚2]

Pr Prandtl Number

Ps Precipitation Amount [𝑚3/𝑠]

𝑦𝑖̂ Predicted Value of the 𝑖𝑡ℎ 𝑆𝑎𝑚𝑝𝑙𝑒

𝑃 Pressure [𝑃𝑎]

𝑅𝑒 Reynolds Number

𝑛 Sample Size

𝑊 Snow Water Equivalent [𝑚]

𝐶𝑝 Specific Heat Capacity [𝐽/𝑘𝑔 𝐾]

𝜎 Stefan-Boltzmann Constant [𝑊/𝑚2𝐾4]
𝑇 Temperature [𝐶𝑜]or [K]

Δ𝑇 Temperature Difference Between Inlet and Outlet [𝐶𝑜]or [K]
𝑘 Thermal Conductivity Coefficient [𝑊/𝑚 𝐾]
𝛼 Thermal Diffusivity [𝑚2/𝑠]

𝐿 Total Length of Piping Travelled [𝑚]

𝑦 True Value of the 𝑖𝑡ℎ 𝑆𝑎𝑚𝑝𝑙𝑒

𝑣 Velocity of Flow Over Flat Plate [𝑚/𝑠]

𝑢 Velocity of Fluid in Pipe [𝑚/𝑠]

Subscripts and Superscripts

𝒂𝒎𝒃 Ambient

𝑪𝒐𝒏𝒅 Conductive Heat Transfer

𝑪𝒐𝒏𝒗 Convective Heat Transfer

𝑬𝒗𝒂𝒑/𝑪𝒐𝒏𝒅 Evaporation/Condensation

𝒇 Fluid within Underground Pipes

𝑹𝒂𝒅 Radiation Heat Loss

𝑺𝒆𝒏𝒔 Sensible Heat

𝑺𝒐𝒍𝒂𝒓 Solar Heating Power

𝑺𝒖𝒏 Sun Average Heating Power

𝑺𝒖𝒓 Surface

𝑯𝒆𝒂𝒕 Thermal Control Input

Abbreviations:

Abbreviation: Definition:

COMEA Computational Engineering and
Analysis

DoE Design of Experiments

ECON Electrically Conductive Concrete

LHS Latin Hypercube Simulation

ML Machine Learning

MAE Mean Absolute Error

MC Monte Carlo

UEB Utah Energy Balance

 1

1.0 Introduction

1.1 Background
In Finland and other countries with cold climates, it is a normal experience to

face multiple months of snow cover annually. Although this is expected by

the locals, it still comes with significant challenges. Up to 3 months of thick

ice and snow covering the ground causes difficulties for all members of the

community. For example, slowdown in public transport and the aviation

industry has many knock-on effects. Frozen streets can be difficult and

dangerous to walk, cycle and drive on, especially for the elderly and those

with physical disabilities. Frozen parks and sports grounds restrict the

activities which can be enjoyed there, affecting the mental and physical

health of millions annually. The removal of ice through manual labour and

other means such gritting the surfaces is technically an option for small areas

of interest but there are more effective long-term solutions.

Underground heating on football pitches is not a new development and has

been around since 1958 when Everton FC introduced electric underground

heating at Goodison Park [3]. Sixty-five years on, it is now a necessity, under

Section K.22 of the Premier League requirements [4]. Undersoil heating is

installed under all pitches to reduce the loss of revenue that would occur by

cancelled matches due to extreme weather.

The 2022 energy crisis brought extreme pressure to maintain affordable and

efficient systems, when the price of energy went as high as 500€/MWh [5].

The energy use of current heating systems has been deemed unreasonable

and so the need to optimise them to reduce costs and minimise energy waste

is vital [6]. It is now more important than ever to be energy conscious and

only use the minimum consumption required without waste, but also to

ensure that optimal playing conditions are met to allow for games to continue

year-round.

Minimising energy consumption whilst retaining adequate playing conditions

is an optimal control problem, which can be solved using computational

methods provided that an accurate model of the snow melting above an

underground heating system is available, which includes all relevant

thermodynamic processes including heat and mass transfers.

The 2023 Computational Engineering and Analysis (COMEA) paper [1]

introduced the work by modelling and simulating the underground heating

system of an artificial football pitch located in Karvetti, Naantali, Finland. It

described a relatively accurate physics-based dynamical heat and mass

balance model which would allow for the operating costs of the underground

heating system to be reduced whilst maintaining the same level of ground

conditions.

1.2 Objectives
This report presents the work and findings of the University of Strathclyde,

Aero-Mechanical Engineering 5th Year Masters Group Project titled “Model-

Based Optimal Control of An Underground Heating System”, research

 2

conducted whilst on international exchange at Turku University of Applied

Sciences in Finland.

The purpose of the project was to improve upon the modelling work started in

the COMEA paper [1] with a more detailed description of the physics of snow

and the heat and mass transfer as it melts. This paper aims to build a model

of an underground heating system for snow and ice removal on an outdoor

football pitch, with minimum energy expenditure and cost, by refining the

dynamical snow melting model based on the COMEA approach and

establishing a computational methodology for optimising the operation of the

underfloor heating system for 7 days ahead of the predicted weather

forecast.

The objectives defined for this project were as follows:

• To gain a clear understanding of the prior work undertaken by the

COMEA research team. This includes familiarisation with the current

heat and mass transfer model, and the relevant physics and

thermodynamics. In addition, the group should spend time to allow for

a clear understanding of the current python code and key input

parameters.

• To refine the dynamical snow melting model, the heat-mass transfer

interactions between different layers of soil, and the interactions

between the snow surface and the outside atmospheric conditions. To

consider multiple layers of snow and the interactions between them

through the generation of snowmelt water and the subsequent

transportation of moisture into the ground.
• To account for the imbalance of snow melting across the length of the

pitch, due to the water-propyleneglycol solution circulating through the

ductwork creating a temperature time delay.

• To produce a detailed comparison to the heated pavement model

paper. The benefits and drawbacks of this model will be analysed and

the opportunities for implementing their modelling techniques into the

current system will be considered.

• To perform a Sensitivity Analysis on the model, examine the output

effects, and improve model accuracy.

• Through Design-of-Experiments, simulate weather conditions and

operational parameters over a wide range, to study the interactions

between variables.

• To utilise Machine Learning methods in establishing a simple

framework for the optimal control scenario in different weather

conditions. From this, write a simplified or “Rules of thumb” guidance

document on the control of the system as it will be controlled by non-

specialist human operators.

• To establish a computational methodology for optimal operation of the

heating system for a linearised weather forecast 1 week in advance.

This could be achieved through further use of Machine Learning

methods.

 3

1.3 Report Structure
The refinement of the original snow melting model is conducted in section 3.2

and considers multiple layers of snow and the interactions between them

through the generation of snowmelt water and the subsequent transportation

of moisture into the ground. This is investigated through an extensive fluid

study, detailed from section 3.2.1 to 3.2.5. The time delay of the water-

propyleneglycol fluid within the underground pipes is studied in section 3.2.6

and the effect on the overall heat transfer model should be determined.

Furthermore, a detailed comparison and incorporation of features such as the

inclusion of evaporation and condensation from the 2007 Liu et. al paper [2]

is investigated in section 3.2.7.

The impact different variables had on the model’s prediction of snow depth,

the use of alternative numerical schemes such as implicit and predictor-

corrector and the effect of different time step sizes for improving the accuracy

of the model whilst still retaining acceptable computational times is

determined through 3 distinct sensitivity analyses in Sections 3.3.1, 3.3.2 and

3.3.3, respectively.

To establish an optimal heating system for a given weather forecast a

Design-of-Experiments is conducted through Latin Hypercube Sampling

(LHS) in section 3.4.1, which is the preliminary work of decision trees to

determine optimal control inputs for different weather situations and trends

continued in section 3.4.2. The purpose of this is to achieve optimal playing

conditions of snow depth ≤ 1mm whilst minimising energy consumption.

The results for all methodologies discussed in Section 3.0 are presented,

analysed, and discussed within Section 4.0. Recommendations for future

research are proposed in Section 4.10.

Appendix A1 – Reflective Report documents the management and group

work throughout this project. It contains personal reflections from each

member of the group documenting their entire experience of exchange and

this project overall.

1.4 Project Scope
The scope of this project was determined through defining clear deliverables

and outcomes, outlined in Section 1.2. The main deliverable of this project

was an improved computational underground heating system model in the

form of Python code which can accurately predict the snow depth on the

artificial football pitch compared with the measured snow depth from weather

data. Furthermore, a ‘Rules of Thumb’ guideline document was also required

to be used by a non-specialist, human operator to determine the optimal

control parameters, Δ𝑇 and Liquid Flow Rate, for a given weather forecast.

 4

2.0 Literature Review

2.1 Original Model
The work within this report aimed to improve the dynamical model of the

thermodynamic processes within an underfloor heating system for the

melting of snow on an artificial grass football pitch, first introduced in the

COMEA paper [1]. Throughout this report this model is referred to as the

‘Original Model’.

Computational modelling of any underground system is based on the

thermodynamic processes of heat and mass transfer. A simple concept

becomes difficult when trying to understand the changing properties of snow

in various weather conditions. Differences in depth, liquid fraction and density

are factors to consider when snow falls and melts at different rates [1].

Many of the heating system models currently in operation are limited as they

are based on simple steady state calculations and are not representative of a

realistic environment, which would have many factors affecting heat transfer.

Differing weather conditions, soil types and interference from external factors

such as wind mean that it can be difficult to replicate a true picture of what is

really happening [2].

The original model [1] introduced a computational model for energy efficient

underground heating control of an outdoor sports field in winter conditions.

The proposal of this nonlinear lumped-parameter model states that different

parameters which would have real life effects within the system are

considered, such as air temperature, wind, precipitation, cloud cover, and sky

radiation heat losses. The model does not allow for weather forecasts to

determine predictive control. It also does not consider feedback control due

to varying field temperatures. The control objective was the energy efficient

melting of the snow, which would accumulate on the pitch surface.

The arrangement of the underground heating system is shown in Figure 1

and consists of 4 distinct layers. A brief description of each layer is provided

in Table 1:

Table 1: Description of Model Layers

L0:

The top snow layer which interfaces with ambient air conditions
such as (wind, cloudiness, precipitation, solar heating, and sky
radiation heat losses.)

L1: The artificial grass layer which is exposed to changing weather
conditions.

L2: A layer of mechanically stabilised earth or MSE, typically
composed of gravel or sand, which is artificially reinforced soil.

L3: The heated layer. The 3 red circles within L3 represent the
heating element, a serpentine pipe which runs the lengths of the
sports ground, and through which flows a water-propyleneglycol
solution, which causes the overall system temperature to
increase.

 5

Figure 1 represents a schematic of an overview of the artificial grass football

pitch with an area 𝐴𝑥𝑦 [𝑚
2] and a depth of 𝑧 [𝑚]. The distinct layers of the

model 𝐿0, 𝐿1, 𝐿2 and 𝐿3 are all incorporated into the layered heat and mass

balance each with lumped parameter averaging across the horizontal

dimensions.

Figure 1: Schematic Overview of the Heating System

The original model does not consider the effects of moisture transport by

water absorption and therefore assumes that the field surface is

impermeable, and the composition of the soil is constant. The work

presented in this paper addresses additional constraints and parameters

such as the effects of ground moisture transport by water absorption and

evaporation. The new model will also consider the delays in thermal

convection between the heat exchanger and the soil.

Forced snow melt occurs due to heated pipes in L3. A heated water-

propyleneglycol solution is circulated through a system of pipes in a

serpentine configuration underneath the football field. The solution is heated

utilising waste heat from a nearby power plant. This type of system has a

wide range of benefits in many applications beyond the one considered in

this paper, such as maintenance of public spaces and other infrastructure

such as roads and pavements, where the accumulation of snow and ice

could be an issue. A significant advantage of this implementation over the

use of salt and grit for de-icing is the environmental impact. Salt and sand

could both accelerate corrosion in the road surface and damage cars passing

over it, which would require additional maintenance and result in higher

financial costs for both governments and individuals. They also suffer from

temperature limitations, leading to further restriction in their useful capacity.

[7] Organisations such as airports and other transport hubs could be

 6

significantly impacted during heavy snowfall, causing delays, and inducing

high costs in maintaining the road surface. Studies have concluded that

mechanical-based methods for snow melting and de-icing could cost as

much as $800 per ton ($1436.96 when converted to today’s equivalent). [8],

increasing the burden of public spending. Other benefits of implementing this

method of de-icing are previously described in 1.0, however, different

solutions have been developed to help tackle this issue [9, 10].

2.2 Alternative Computational Models

2.2.1 Utah Model

The 2013 model described in ‘Modeling the snow surface temperature with a

1-layer energy balance snowmelt model’ [11] is the basis from which the

original model was formed. It estimates melting characteristics, using simple

mass and energy balances to determine heat fluxes. The Utah Energy

Balance (UEB) model assumes that the surface of the field is impermeable,

and the soil is therefore unchanged by temperature. Using dynamical and

real-life physics it models the intersection between snow and ground in

numerous weather conditions. The UEB method models using one layer of

snow to simplify computations, but allows snow surface temperature to vary

from the snow average temperature by using equilibrium gradient

parameterisation, based on surface energy balance.

The variables used in the UEB are snow water equivalent, 𝑊 [𝑚] and

internal energy of the snowpack 𝑈 [𝑘𝐽𝑚−2] and the model is strongly based

on conservation of mass and energy. The UEB takes into consideration the

large thermal insulating properties of snow and therefore assumes the

thermal gradients in the snowpack to be large and non-linear.

The UEB paper evaluates 3 approaches: equilibrium gradient, force-restore

and modified force-restore as part of a heat and mass balance snowmelt

model, as well as evaluating the theory of meltwater refreezing. These

additions allowed for more accurate and truer 1-layer snowpacks to be

included in the computational energy balance.

The Utah model is not the primary basis for the original model, or the model

described in this paper, as it does not incorporate a heat source which can

be controlled and is designed for snowpacks or much larger surface areas.

2.2.2 Comparison of the Heated Pavement Model

The work of the original model [1], although similar, still has significant

differences to the example presented in the 2007 paper, “Modelling Snow

Melting on Heated Pavement Surfaces. Part I: Model Development” [2],

which describes the snow melting process on the surface of a heated

pavement.

The pavement model considers snow melting on a hydronically-heated

pavement. Hydronically-heated pavements are environmentally conscience

alternatives to traditional de-icing methods. They work by circulating fluids

such as brine, oils or glycol-water through pipes embedded below the target

surface [12]. Hydronically-heated pavements work year-round and not just

during the colder seasons. During warmer summer months when the surface

 7

temperature is high, the temperature of the fluid increases, and the energy

from the heated fluid is saved in thermal energy storages, used throughout

colder months for de-icing pavements.

The main difference between the original model and the pavement model is

the consideration of snow as a multiphase model, subject to forced

conductive heat flux from below. Both models defined boundary conditions

and developed heat and mass transfers for their individual conditions. The

pavement model’s heat and mass transfers allowed for the inclusion of a

variety of weather conditions and surface types. The pavement model,

however, can predict the transient surface conditions, snow cover and

surface temperatures from heat fluxes and weather forecasts.

The difficulties with modelling underground heating systems come due to the

varying properties of snow in real life weather conditions, which change

throughout individual days. The depth of snow and the value of the liquid

fraction becomes inconsistent [1]. Models of snow melting should be as

close to real-time control as possible and therefore be relatively lightweight.

As the pavement model attempts to include all associated physics it would

require large computational power and therefore would not be considered as

effective in these terms as the original model.

The improved model developed in this report will incorporate some of the

features explored in the pavement model such as the inclusion of 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑

and the consideration of snow as a multiphase model based on the 7 snow

types classified in [13], discussed further in Section 2.7.

2.3 Heat and Mass Transfer Equations
As described in Section 2.1 the ground under the football pitch is separated

into layers. The model developed within this report keeps the same physical

architecture of the football pitch from [1] and therefore the heat and mass

transfers between 𝐿1, 𝐿2 and 𝐿3 remain the same.

Heat is transferred upwards from the heated pipes located in L3 towards L0

where it melts the snowpack present.

The heat balance equations through these layers are described in the

following section.

Firstly, 𝑄̇𝐻𝑒𝑎𝑡 is the thermal control input from the underfloor pipes in L3 and

is calculated using:

𝑄̇𝐻𝑒𝑎𝑡 = 𝑚̇𝑓𝐶𝑝,𝑓∆𝑇𝑓

[1]

Where ∆𝑇𝑓 is the difference between the inlet and outlet temperature of the

fluid.

Heat is transferred between adjacent layers by conduction and the

conduction heat transfer rate for layers 𝑖 and 𝑗 is given by:

 8

𝑄̇𝐶𝑜𝑛𝑑,𝑖𝑗 =
𝑘𝑖𝑗

∆𝑧𝑖𝑗
𝐴𝑥𝑦(𝑇𝑖 − 𝑇𝑗)

[2]

Where ∆𝑧𝑖𝑗 is the vertical distance between layers.

The balance equations for each subsequent layer are given.

For the heated bottom layer L3:

𝑚3𝐶𝑝3
𝑇3
𝑡+∆𝑡 − 𝑇3

𝑡

∆𝑡
= 𝑄̇𝐻𝑒𝑎𝑡 + 𝑄̇𝐶𝑜𝑛𝑑,23 − 𝑄̇3𝑔

[3]

For the mid layer L2:

𝑚2𝐶𝑝2
𝑇2
𝑡+∆𝑡 − 𝑇2

𝑡

∆𝑡
= −𝑄̇𝐶𝑜𝑛𝑑,23 + 𝑄̇𝐶𝑜𝑛𝑑,12 − 𝑄̇2𝑔

[4]

For the turf layer L1 and the snowpack L0:

𝑚1𝐶𝑝1
𝑇1
𝑡+∆𝑡−𝑇1

𝑡

∆𝑡
= −𝑄̇𝐶𝑜𝑛𝑑,12 − (1 − 𝛾)𝑄̇𝐶𝑜𝑛𝑑,01 + 𝛾(𝑄̇𝐶𝑜𝑛𝑣 + 𝑄̇𝑆𝑜𝑙𝑎𝑟 + 𝑄̇𝑅𝑎𝑑 +

𝑄̇𝑠𝑒𝑛𝑠)

[5]

If the depth of snow, 𝑑𝑆𝑛𝑜𝑤 is > 10−4 m then 𝛾 = 0 and if 𝑑𝑆𝑛𝑜𝑤 < 10
−4 m then

𝛾 = 1.

Equation [5] represents the balance equation for the turf layer L1 and if

present, the snowpack layer L0.

The snowpack is exposed to external factors and ambient air conditions such

as heat transfer by convection, radiation heat losses, solar heating, and

precipitation heat flux.

The convective heat transfer rate from the surface of the snowpack is given

by:

𝑄̇𝐶𝑜𝑛𝑣 = ℎ𝐴𝑥𝑦(𝑇𝑎𝑖𝑟 − 𝑇)

[6]

Where ℎ is the convection heat transfer coefficient obtained from flat plate

boundary layer flow theory.

ℎ = 5.74 ∙ 𝑣0.8 ∙ 𝐿𝑒𝑓𝑓
−0.2

[7]

Where 𝐿𝑒𝑓𝑓 = 4𝐴𝑥𝑦/(2Δ𝑥 + 2Δ𝑦) [𝑚] is the characteristic length for a

rectangular field surface section.

 9

The radiation heat loss is given by:

𝑄̇𝑅𝑎𝑑 = 𝜀𝜎(𝑇𝑠𝑛𝑜𝑤_𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑠𝑘𝑦

4)

[8]

Where 𝜎 = 5.67 × 10−8 𝑊 𝑚2𝐾4⁄ is the Stefan-Boltzmann Constant.

The effect of clouds in solar heating power is given by:

𝑄̇𝑆𝑜𝑙𝑎𝑟 = 𝑄̇𝑆𝑢𝑛𝐴𝑥𝑦

[9]

Where 𝑄̇𝑆𝑢𝑛 is the sun average heating power and is given by:

𝑄̇𝑆𝑢𝑛 = ((1 − 𝐶) + 0.5)𝑞̇𝑠𝑜𝑙𝑎𝑟

[10]

Where 𝐶 is the cloudiness ratio (with 𝐶 = 0 indicating clear skies and 𝐶 = 1

indicating full cloud cover).

The sensible heat flux associated with precipitation is given by:

𝑄̇𝑠𝑒𝑛𝑠 = 𝑚̇𝑟𝑎𝑖𝑛𝐶𝑝,𝑤𝑎𝑡𝑒𝑟(𝑇𝑎𝑖𝑟 − 𝑇1)

[11]

Where 𝑇1 is the turf temperature as shown in Figure 1.

The conduction heat transfer rate at the top surface of a dry snow layer is

given by:

𝑄̇𝐶𝑜𝑛𝑑 =
𝑘

𝑧
𝐴𝑥𝑦(𝑇𝑎𝑖𝑟 − 𝑇)

[12]

The equations described above are the basis of the original model’s balance

equations and subsequent python script. The script simulates snowpack over

a 3-month period, which is exposed to real life physics and ambient air

conditions. It was able to predict snow depth to a reasonable level of

accuracy, through the use of parameter identification which inputted different

weather conditions into the model. The results of this are shown in Figure 2.

 10

Figure 2: Measured and predicted snow depths (solid lines) and measured rainfall (dashed line).

2.4 Underground Heating Using Electrodes
The original model looks at an example of an underground heating system

which uses pipes of heated water-propyleneglycol solution to melt the

accumulated snow on the surface. This is not the only technology used for

underfloor heating.

One implementation, which has been tested at the Iowa Department of

Transport headquarters, is an ECON (Electrically Conductive Concrete)

Heated Pavement System [14]. This employs the use of electrodes for

heating, rather than a fluid circulating through tubing. In this case,

temperature sensors are utilized to monitor the surface temperature and

activate if this falls below 5°C. This helps reduce energy consumption as the

system will not activate if the road surface is sufficiently warm. Testing of

different ECON mix designs was performed to optimize heat transfer to the

surface layer. Test sections were also designed using different numbers of

electrodes, as well as varying the shape of the electrodes – a smooth circular

bar, a hollow circular bar and a flat bar were all considered. This investigation

found that the flat bar produced the highest power density while the solid bar

produced the lowest power density.

This could have some potential advantages over the current system

implemented at the football field. The key advantage is accommodating for

the imbalance that exists in the current system with regards to heat

distribution across different sides of the field. The time it takes for the hot fluid

to be circulated through the entire system will result in uneven melting of the

snow in some parts of the pitch when compared to others.

 11

2.5 Time Delay Imbalance
One disadvantage of underground heating system of the original model is the

time delay between activation of the system and heat reaching the surface

layer. [15] This can be visualised in Figure 3, showing the large temperature

differences between the inlet and outlet sections of the pipe. [16]

Figure 3: Temperature-Time Delay in a Pipe Section

There are several factors which impact the performance, including the depth

at which the tubing is placed, and outside ambient conditions. In their paper

“CFD-Based Sensitivity-Analysis and Performance Investigation of a

Hydronic Road-Heating System” [7], A. Ahmed et al. performed tests to

understand the time taken for a road heating system in the southern part of

Germany to reach and maintain a constant temperature of 3°C on the asphalt

surface. The tests were carried out in December, aiming to capture the most

demanding time of the year for these systems. Initial studies considered 3

weather scenarios - when the temperature 3 different conditions - when the

initial temperature of the asphalt is 3°C, 0°C, and −3°C with snowfall. Results

showed that changing the initialization temperature had an impact on the

time taken to reach and maintain a constant temperature on the asphalt

surface. Higher initialisation temperature allows for shorter periods of

operation, reducing energy demand and costs. Nevertheless, to maintain a

temperature of 3°C the system required around 12 – 15 hours of preheating

(dependent on the initialization temperature) to avoid the accumulation of

snow and ice [7]. This demonstrates the high lead times required for heating

the surface in harsh weather conditions and the need for accurate weather

models to help with predicting the impact on the road surfaces.

Further improvements were made by employing a predictive controller based

on live weather forecasts, instead of a simple one working at a constant

heating value continuously. Instances where road surface temperature was

below 0°C and another scenario where surface temperature was both below

0°C and the dew-point temperature were considered. The temperature

threshold was defined between +0.1°C and +1.6°C as both the freezing

temperature and the dew-point temperature for pre-heating the road surface.

The second approach proved capable of saving 10 times the annual required

energy for hydronic road heating [7, 17].

In this project, restrictions exist on modifications that can be made to the

physical setup. There are no plans to perform maintenance on the field at the

time of writing, meaning that the existing system must be utilised, with its

 12

flaws and limitations. This means that the distance between the tubing and

the top layer of soil cannot be changed to optimise for better heat transfer, as

this would require costly refitting and would result in the pitch being unusable

for a significant duration of time. Installing insulation is another consideration

which could significantly improve the thermal properties of the existing setup.

Nevertheless, completely overhauling the underlying technology is beyond

the scope of this project. The focus is instead on improving the existing

technology through the implementation of computational analysis methods to

better predict and react to different weather conditions.

Firstly, the flow rate of the solution must be considered. The main way in

which this can be impacted is through increasing the velocity at which the

solution enters the piping. This will induce a change in the Reynolds Number,

according to the relationship:

𝑅𝑒 =
𝜌𝑢𝐿

𝜇

[13]

Where 𝜌 is the density of the solution, 𝜇 is the dynamic viscosity of the fluid,

𝑢 is the velocity and 𝐿 is the length of piping travelled.

The Prandtl number is a measure of the ratio between momentum diffusivity

and thermal diffusivity, described by the equation:

Pr =
𝜈

𝛼
=
𝐶𝑝𝜇

𝑘

[14]

Where 𝐶𝑝 is the specific heat capacity of the fluid and k is the thermal

conductivity.

The Nusselt Number is the ratio of conductive to convective heat transfer,

which describes the thermal energy transferred. This could then be found

from the following equation:

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.4

[15]

This equation is valid for the assumptions 0.6 < Pr < 160 and 𝑅𝑒 > 10,000

[18]. The Euler Number is the ratio of pressure forces to mechanical forces:

𝐸𝑢 =
∆𝑃

𝜌𝜈2

[16]

Using the above equations for the Nusselt Number and the Euler Number,

the energy ratio between the thermal energy transferred and the mechanical

energy required can be found.

 13

𝐸𝑅 =
𝑁𝑢

𝐸𝑢

[17]

One of the main observations from the equations above is that the energy

ratio could be directly impacted by altering the velocity of the solution. For

example, an increase in the velocity will induce an increase in the Reynolds

Number. The Prandtl Number is a function of the properties of the fluid so it

will not be impacted by this change. This means that as long as the validity

conditions are met, the Nusselt number, which represents the transfer of

thermal energy, will also be increased. An increase in velocity will also

generally result in a decrease in the Euler Number, due to the 𝑣2 condition in

the Euler equation. Finally, this will result in an increase in the energy ratio,

ER.

The other condition which hugely impacts the heat transfer performance is

the temperature difference between the inlet and the outlet. The inlet

temperature can be impacted by the heating method, which in this case is

waste heat from a nearby power plant. Once the fluid is inside the pipes,

there are several factors which impact thermal performance. The most

important ones will be the physical properties of the solution; however, the

diameter of the pipes has also been found to have a significant role in heat

transfer [18]. In smaller diameter pipes, there are much smaller velocity and

temperature gradients between the bulk fluid and the near-wall region, which

is beneficial to the heat transfer. Smaller diameter pipes also tend to be less

impacted by what is referred to as secondary flows, where a boundary layer

develops, impeding the motion of parts of the incoming flow. The length of

the pipes is another key condition, due to the length of time it takes to

circulate the fluid. This delay could have significant adverse effects on the

performance of the system, for example if it is controlled by a sensor located

at a different point from the actuator [19]. “Effect of delay in thermal systems

with long ducts” explores the underlying equations used to model the heat

transfer in long ducts and a number of specific cases, such as closed loop

heating, similar to the network currently in operation at the football field in

Naantali. This includes energy balances at the inlet and outlet sections,

providing important insight into the techniques used in the modelling of such

phenomena [19]. Different models could be used for this purpose, detailed by

J. Duquette et al [20].

2.6 Moisture Transport
Water can be introduced to the pitch soil through several mechanisms, such

as rainfall, runoff, and flood water. As liquid water enters the system, gravity

pushes it into the porous soil, and horizontal diffusion of moisture may affect

the heating system, despite the impermeable turf layer above. There are

several ways in which the introduction of moisture could impact the operating

of a heating system, with heat loss to the ground presenting a major

challenge [21]. The chosen properties with potential for variation, were the

soil temperature, thermal conductivity, heat capacity and density [22, 23].

 14

Porosity is a unitless measurement of the volume of soil which is comprised

of air pockets compared to the overall volume. It is a key factor affecting the

motion of liquid water through a porous medium.

The primary relationship to represent fluid flow through a porous medium is

known as ‘Darcy’s Law’ [24]. This function determines the flow rate of a fluid

through the medium, and is made up of several terms:

𝑄  =
𝐾

𝜇
𝐴

Δ𝑃

𝐿

[18]

𝐾 represents the permeability of the medium, in units of Darcy, or 𝜇𝑚2, and is

a measure of the difficulty of passage for fluids. The remaining terms

represent viscosity 𝜇 in [𝑚𝑃𝑎 𝑠], flow cross-sectional area 𝐴 in
[𝑐𝑚3], pressure difference ∆𝑃 in [10−1 𝑀𝑃𝑎] and the length between cross-

sections studied 𝐿 in [𝑐𝑚]. For this study, the cross sections were the soil

surface to the lower soil boundary at a chosen depth.

In addition, when outside ambient temperatures in soil are below zero, fluid

within the soil becomes frozen, and transport does not occur.

The method of incorporating the moisture transport effect had to consider

temperature, porosity and Darcy’s Law for an accurate representation of

reality [25, 26].

2.7 Snow Classifications
Snow as a substance cannot be assumed to be consistent or have constant

properties. Several external factors can cause significant differences in snow

properties. 7 classifications, shown in Table 2, were identified by Rees et al.

[13] and discussed in [2].

Table 2: Classifications of Snow

Surface
Condition

Definition

Dry
No precipitation present. Surface can be above or below
freezing temperature but is free of all liquid and ice.

Wet

Precipitation is present. Surface temperature is above
freezing and has liquid water present but no ice. The
water can be a result of rainfall, condensed vapour, or
melted snow.

Hoarfrost
Surface temperature is below freezing. Frost covers the
surface due to the sublimation of water vapour in the
ambient air on a cold surface.

Dry Snow

Surface temperature is below freezing so no melting will
occur. The surface is covered with dry snow which does
not contain any liquid and can be considered a porous
matrix of ice.

 15

Slush Only

Surface temperature is at freezing point. The surface
contains ice crystals that are fully saturated with water.
The water penetrates the porous matrix of ice upwards
from surface level.

Snow and Slush
Surface temperature is at freezing point. The snow on the
surface is part melted. The upper surface is dry snow,
and the lower snow is saturated with water.

Solid Ice
Surface temperature is below freezing and the ice on the
surface is solid not porous like snow.

It is important to understand the different classifications of snow to allow for a

realistic multi-layer model of the snow on a heated surface to be described.

An ideal model would achieve the ability to provide accurate control

guidance, for any occurring weather pattern, minimising cost, and energy

use.

2.8 Latin Hypercube Sampling
LHS is a type of stratified Monte Carlo (MC) method. MC sampling methods

are computational algorithms which return numerical results by randomly

sampling a range of data points. The purpose of MC is to obtain solutions to

problems which are established in principle through randomness.

From [27] it was determined that LHS is more efficient and requires less

computational time than MC.

LHS is based on the 2-dimensional Latin Square Design which has each

variable (A, B, C and D) once in each row and once in each collum. A 4x4

Latin Square Design is shown in Figure 4. LHS is 3 or more Latin Square

Designs arranged in a cube of multiple dimensions.

 Columns

 1 2 3 4

R
o

w
s

1 A B C D

2 B C D A

3 C D A B

4 D A B C

Figure 4: 4x4 Latin Square Design

 16

First developed by McKay in 1979 [28] for computational experiments of

partial differential equations, numerical methods and simulations. LHS allow

for the Design of Experiments (DoE) with 1-dimensional balance projection

property [29].

To develop a LHS of size 𝑛, with the inputs 𝑋 = (𝑥1,𝑥2… , 𝑥𝑑) denote the 𝑛

runs by 𝑋1, … , 𝑋𝑛. The 𝑘th component of 𝑋𝑗 is represented by 𝑥𝑗𝑘 for 𝑘 =

1, … , 𝑑. Input variables get sized to have domain [0,1]. Π = (𝜋𝑗𝑘) is a matrix

sized 𝑛 × 𝑑 with columns of values {1,2, … , 𝑛} arranges randomly [29].

Figure 5: Latin Hypercube Design with 3 Factors and 6 Design Points

Knowing Π a Latin Hypercube design can be developed using:

𝑥𝑗𝑘 =
𝜋𝑗𝑘 − 0.5

𝑛
, 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑑

[19]

2.9 Digital Twins
A concept commonly employed in engineering is the Digital Twin. Digital

Twins can exist in a range of different applications, from Healthcare to

Education to Manufacturing. The term has even been mentioned in NASA’s

interplanetary development programme [30]. The definition is very flexible;

however, it generally involves creating a contextualised virtual model of a

real-life situation, meaning that it allows for the behaviour of the object in real

scenarios to be accurately simulated. The degree to which the physical

processes are mirrored in the computer model will determine the precision of

the results [31]. If the model can provide an accurate representation of the

operation of the object and its environment, it can be an extremely useful tool

in making predictions and can greatly reduce the need for physical testing. A

large variety of operational conditions can be tested, including extremes,

providing key information about the limitations of the materials and design

[32]. Thus, being able to test virtually makes a project much more flexible,

allowing for small adaptations and updates without material cost [33]. With

increasing use of Artificial Intelligence and Machine Learning in engineering,

having a Digital Twin makes implementation of learning tools easy [34].

It is impossible for a digital twin to perfectly replicate reality, and while near-

perfect simulations can be achieved, it is often highly computationally

intensive. Usually, compromises are made when developing a Digital Twin,

Π =

1
2
3

5
1
3

3
4
1

4
5

6
2

2
6

6 4 5

 17

with the intention of modelling only factors which are relevant to the desired

results of the study [33]. This could lead to reductions in the precision of the

model; therefore, a balance has to be found between efficiency and

accuracy. The 3 main features of the architecture of a Digital Twin are

described in “Digital Twins Architecture” [35] as:

1. Element: Described as a virtual model, faithful to the physical system.

2. Behavior: Representing physics through computational models (such

as movements and flows).

3. Integration: Connecting the virtual and physical system to allow

synchronism between them.

In the scope of this project, data gathered from the real system was used for

the creation of the digital model: both for the pipe network under the surface

of the pitch (the element) and weather data to accurately represent the real-

world behaviour. While not a full digital twin by the definition of the term, as

data is not exchanged automatically between the 2 systems (integration), the

virtual model used in this thesis is an accurate depiction which could be used

for the purposes of optimising the real system.

2.10 Machine Learning
Machine Learning (ML) continues to cement its importance in modern

engineering. Complex algorithms can help to make useful predictions from

available data in many real-world engineering problems. Data is often

specifically modified for use in ML algorithms, through processes such as

data cleaning and scaling. The accuracy of an ML model can be determined

by many calculated metrics, and these can be selected based on suitability.

There are 2 categories in which ML methods fall: Supervised and

Unsupervised. Within this study, Supervised learning is used exclusively.

This is when data input and output are known and labelled. Unsupervised

learning involves finding patterns in unlabelled data entries, such as linking

samples with similar properties [36].

2.10.1 Regression and Classification

Regression and classification are two common forms of supervised learning.

The difference between the methods lies in their prediction output.

Regression predicts a numerical value, based on the values given in data

columns for each data sample. This means that in regression, all column

values must be numerical, and string data must be converted. Classification

instead allocates each data entry to a category, and there is no requirement

for all values to be numerical [36].

2.10.2 Training and Testing

Before data is used to influence decision-making in a Machine Learning

algorithm, it must be correctly divided into training and testing data. Training

data is used to inform the algorithm of the relationships between data

columns (‘Features’) and their corresponding target values. Target values for

the testing data are then predicted. Data rows (‘Samples’) are often split 80%

20%, with the majority being allocated to training. The more samples that are

 18

included in the training data, the more accurate an algorithm’s predictions

become. A common way to separate data as required, is through the use of

scitkit-learn’s ‘𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡()’ tool. The tool uses a ‘𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒’
parameter to identify set sample shuffle orders, when selecting which

samples will be used for training and which will be kept for testing [37].

2.10.3 Machine Learning Models

There are many different forms of automated learning mechanisms for

predictive data analysis, each with their own strengths depending on the

desired outcome. The simplest form of solver is the linear model, where the

required target, either category or number, is expected to have a linear

relationship to the features, and a line of best fit is used for prediction [38].

The k-Nearest Neighbours model is an algorithm which can be used for both

classification and regression. Unlike other methods which learn from training

data, k-Nearest Neighbours memorises the training data and estimates the

conditional probability for each class 𝑗, shown by:

𝑃𝑗 =
1

𝑘
∑ 𝐼(𝑦∗

𝑁0

= 𝑗)

[20]

Where 𝑘 is the training observations closest to the predictor value 𝑥0,

represented by the neighbor region, 𝑁0, 𝑦
∗ is the class label and 𝐼 is the

indicator [39]. The main advantage of the k-Nearest Neighbours model is that

it does not require a training phase unlike other algorithms, and it is relatively

simple to understand and implement.

Naïve Bayes models utilise graphical solution methods, based on Bayes’

Theorem of probability [36]. With an input of 𝑥, the classification process

gives a maximised posterior probability as an output, shown by:

𝑃(𝑐|𝑥) =
𝑃(𝑋|𝐶)𝑃(𝑐)

𝑃(𝑥)

[21]

Where 𝑃(𝑐|𝑥) is the posterior probability, 𝑃(𝑐) is the prior probability of a

class, 𝑃(𝑥) is the prior probability of the predictor and 𝑃(𝑋|𝐶) is the e

probability of the predictor for the class 𝑐 [39]. The Naïve Bayes method is

effective at working with smaller datasets and is quick, easy and simple to

implement. However, its performance is not as high when compared to more

advanced models, so it is primarily used as a comparison to validate these

methods.

Support vector machines (SVM) can be used for regression or classification.

They function by creating ‘hyperplanes’, which can separate data samples for

prediction [40]. In a 2-dimensional problem where a solver must classify 2

groups of data from a dataset, the ‘hyperplane’ can be visualised as a simple

straight line on a scatter plot. SVMs are capable of solving Regression and

Classification problems that have many more dimensions, achieved by the

 19

hyperplane operating in additional dimensions alongside the data. Mapping a

higher dimensional space allows non-linear relationships to be understood.

For regression problems, this solver has an additional ‘epsilon’ parameter

that determines the error tolerance of the hyperplane function [41].

Ensemble methods are a group of machine learning algorithms which

combine several solvers to improve prediction power [42]. Bagging and

boosting are applied to the base estimator to reduce variance or bias.

Bagging is a simple method for manipulating the given dataset. During each

iteration the learning algorithm produces a bootstrap replicate training set

which contains approximately 63.2% of the original data set and the

remainder consists of subsets of randomly selected data samples [43].

Bagging is done to improve the overall performance accuracy of the selected

machine learning method. An example of an ensemble method is Random

Forest.

2.10.4 Decision Trees

Decision trees are Machine Learning algorithms which can be visualised

similarly to flow-charts. They can help to identify trends and patterns in large

datasets. They allow the user to observe all possible outcomes of a specified

decision and can be used for both regression and classification problems.

They are a supervised learning algorithm which are suitable for categorical

and continuous output variables, without the need for feature scaling or

normalisation [44]. Scaling within machine learning is defined as changing

the data range to fit within a desired scale, for example between 0 and 100.

Machine learning methods such as Support Vector Machines and K-Nearest

Neighbours require scaling.

Unlike scaling (which doesn’t affect the overall shape of the data),

normalisation directly affects the distribution shape. It does this to form the

data so that it follows a ‘bell curve’ and can be described as a normal

distribution or Gaussian distribution. Approximately half of the observations

then lie below the mean average and half the observations lie above, with the

majority of data sitting close the mean value. Machine learning methods such

as linear discriminant analysis and Gaussian naive Bayes require

normalisation [45].

One advantage of decision trees over alternative machine learning models is

the effective way in which the output can be graphically visualised. As the

name suggests, decision tree modelling results in a ‘tree’ being produced.

This tree is very similar visually to a flow chart and can be interpreted the

same way. Within a tree, data is organised by several characteristics into

small groups, creating the tree-like structure. Each final decision (category or

numerical target) for a sample is called a ‘leaf’ [36]. Branches and nodes of

conditions and results are generating during training, until a final end node is

present with no other possible condition to branch off to. Figure 6 is an

example of a decision tree which can determine the smallest of 3 numbers

named a, b and c. The trees produced are easily interpreted and understood

but as still extremely effective ways of displaying the required data as they

 20

break down the decision-making process into many smaller straightforward

and logical decisions [46].

Figure 6: Decision Tree of 3 Numbers

Decision trees are initially developed by fitting the training data, 𝑥_𝑡𝑟𝑎𝑖𝑛. This

fitting considers the possibility of variations within the training data which are

anomalies within the entire sample. Target values can then be found by

introducing 𝑥_𝑡𝑒𝑠𝑡, an independent sample dataset which evaluates the

decisions through predictions [47].

Pruning is a process within the decision tree which reduces the depth of the

output tree and replaces decision rules within with leaf nodes. This lowers the

complexity of the tree and makes it easier to understand and implement. The

decisions which are often removed are the ones that overfit and reduce the

predictive accuracy.

Another advantage of decision trees over alternative machine learning

models is the lack of data preprocessing required. This means that unlike

other methods, input data is in a suitable form for training without initial

analysis reducing the computational time of the overall modelling process

[48].

Feature selection within the decision tree method is done primarily by taking

the features with the most significant impact and splitting them. This can

reduce the risk of overfitting as it limits decision splits from less impactful

features, therefore improving the accuracy. Ensuring the decision tree splits

the most optimal features can be achieved using scitkit-learn’s

‘𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑡𝑟𝑒𝑒. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟()’ [49]. The default setting for the

splitter used is ‘𝑏𝑒𝑠𝑡’, but it can be changed to ‘𝑟𝑎𝑛𝑑𝑜𝑚’. Splitter is the

 21

strategy used to split decisions at each node so by using ‘𝑏𝑒𝑠𝑡’ it is ensured

to pick the most optimal path.

Decision trees can also be used as the base estimator for ensemble methods

such as Random Forests, Gradient Boost, and Adaptive Booster.

One limitation of decision trees is that they can be very sensitive to variations

within data. If there are ever any changes, big or small, with a node located

near the root of the tree which splits the results, the knock-on effect can

result in a decision tree being produced with an entirely different shape and

structure [46]. Another limitation is associated with the accuracy of decision

tree modelling, which is not as strong in predictive accuracy as other models.

The 2004 paper [47], “An Introduction to Decision Tree Modeling” evaluated

the accuracy of a classifier decision tree and found that 9 out of 34 test

samples were wrongly predicted partly due to overfitting of the training set.

Although there are many advantages of using ensemble methods such as

excellent performance accuracy for complex and large problems, there are

still some advantages for choosing a single decision tree. The outputs of

single decision trees are far simpler to interpret and visualise and are less

likely to overfit. For these reasons, the machine learning method chosen to

establish optimal control guidance within this report is decision trees, as the

scope of this project only requires “rule of thumb” guidance so does not

require the level of depth produced by ensemble methods such as Random

Forest.

 22

3.0 Methodology

3.1 Thermodynamic Processes
Precipitation in the form of snow gathers on surfaces when temperatures

are low and compresses into solid ice due to its own weight. When this

ice reaches sufficiently high temperatures either due to solar heating or

forced from underground heating systems as with this case the snow will

melt. For a phase change from solid ice to liquid water to occur, a specific

amount of energy must be available. This is known as the latent heat of

fusion. During this process the temperature of the substance is constant

until the phase change is complete. Figure 7 shows a simplified

schematic of this phase change within the heated football pitch.

Figure 7: Simplified Phase Diagram of System

The pitch of interest from the original model (located in Naantali, Finland) is

covered with impermeable artificial turf. This means that the meltwater from

the snowpack cannot seep downwards directly through the soil and instead

must run off the pitch entirely before penetrating. The pitch is designed in

such a way that any surface water will run off to either side instead of

gathering in puddles. The geometry of the pitch can be seen in Figure 8. It is

sloped down the length of the pitch symmetrically through the central line at a

gradient of 1%. Figure 8 is not drawn to scale and dimensions are

exaggerated for clarity. Due to the small angle and comparatively large size

of the football pitch the slope cannot be noticed by the players, but it is

effective enough in aiding runoff precipitation in the desired direction [50].

Precipitation in the form of rain or melted snow can fall anywhere on the

impermeable pitch and flow from the sides towards permeable ground where

 23

it is absorbed. The effects of moisture under the pitch are considered and

discussed in Section 3.2.1.

Figure 8: Side Profile View of Slope of Pitch (Not to Scale)

3.2 Melting Model Refinement
To improve the accuracy of the predicted values of snow depth by the

computational model, refinements were made to the model’s representation

of real physics. These improvements included refining the heat-mass transfer

interactions between different layers of soil, and the interactions between the

snow surface and the outside atmospheric conditions. For this purpose,

multiple layers of snow and the interactions between them through the

generation of snowmelt water and the subsequent transportation of moisture

into the ground were considered. Additionally, the imbalance of snow melting

across the length of the pitch, created by the time delay in circulation, was

addressed. Finally, a detailed comparison of the heated pavement model

paper and implication of some attributes to the current model was created.

3.2.1 Introduction to Moisture Transport Simulation

The effect the movement of moisture had on the underground heating

system’s heat transfer properties, was investigated by modelling the transport

of fluid within the computational model. Ansys Fluent was chosen as the best

method for accurately modelling water movement. Ansys had a Volume of

Fluids option, which allowed the simulation of 2 different types of fluid in a

domain, modelling their interaction. For this study, the water-air interaction

was in the form of surface tension, set to be constant at 0.072 N/m.

Properties were horizontally averaged across the pitch in the original model,

therefore only half of the horizontal cross-section was modelled in Design

 24

Modeller as the geometry could be assumed to be symmetrical. An outer soil

domain was also modelled which represented the soil not located directly

beneath the pitch. Unlike the soil directly below the pitch this outer soil did

not have an impermeable layer overhead. The 2 soil domains were set as

porous zones and given a porosity of 0.4 to match a typical porosity value for

a sandy soil which ranges between 0.33 and 0.47 [51]. The soil was also set

as a laminar zone, to reduce the complexity of the solution and improve

simulation time. The solver type chosen was transient, with an adaptive

timestep. With this type, complex fluid motion could be properly simulated,

and in instances where fluid motion became mostly constant, the simulation

would adjust to increase the timestep.

It was important to model the soil zones with a sufficient width and depth, to

avoid negative effects associated with the pressure outlet boundary

condition. Varying depths of 7m and 2m were analysed to determine the

effect of the lower pressure outlet on accuracy, each with identical

parameters. The mesh was adapted between cases to maintain resolution.

To begin the test, the outer soil area was patched to be fully saturated with

water. The drainage of water through the lower pressure outlet boundaries, of

the inner and outer soil zones was captured using reports of area-weighted

average water content.

The setup of the moisture simulation was a complicated process that

spanned a large portion of the project. Several drafts of the setup were

created with different criteria. Each attempt aimed to find the most accurate

model of underground moisture movement to draw results from. This

matched the nature of the project, completed in collaboration with members

of the COMEA research group, who often suggested directions to take when

attempting to increase accuracy. Finding results in a research-based project

does not always follow a direct path, and this was reflected in the moisture

transport subtask.

There were 4 main drafts of the setup, each taking several weeks to develop.

3.2.2 Moisture Transport Iteration 1

The first version involved a highly detailed recreation of rainfall above the

pitch and outer soil. This was achieved by modelling a water tank zone, and

a sky zone. The interface between these zones was set up with several small

wall boundaries, causing water to fall in a similar way to raindrops. The main

issue with this setup was the computational time required to run simulations.

The large sky zone and high level of randomness in the water ultimately led

to the requirement of a redrafted setup. Result recordings did not reach a

suitable stage of flow time to be viable and were therefore omitted from

consideration.

3.2.3 Moisture Transport Iteration 2

The second iteration of the setup sought to simplify the domain heavily, first

by removing the sky and water tank zones. The new geometry was then

finalised, shown in Figure 9.

 25

Figure 9: Geometry of 2nd Iteration Simulation

The updated geometry struck a balance between accuracy and

computational time. A velocity inlet was added to the soil surface, to feed

water directly. The vertical boundary beneath the pitch was set as type

symmetry, keeping the other half of the pitch in consideration. To account for

water flow quantity, 4 different velocity inlet cases were chosen: 0.5mm/h,

2.5mm/h, 5mm/h and 25mm/h. 0.5mm/h represented simple melt outflow,

2.5mm/h was light rain, 5mm/h was moderate rain, and 25mm/h was heavy

rain or floodwater. For further representation of reality, the state of the soil

under the system was included, increasing the number of cases. At first,4

cases were considered, 3 in which the gauge pressure at the lower pressure

outlet boundaries was increased (0Pa, 50Pa, 100Pa). The last case assumed

a solid wall with no liquid transfer across the lower boundaries. This resulted

in 16 total scenarios. All 16 scenarios were calculated for a flow time of 1

hour, with monitors set to record plots of important parameters.

Another adaptation that took place before reflecting the results in the python

model, was setting the velocity inlet to 0m/s. This was to prevent any artificial

forcing of the water as it moved through the soil. The 0Pa case and Solid wall

case were reconfigured to begin fully saturated in the outer soil zone, and

slowly drain as flow time increased. The geometry with the fully saturated

condition is shown in Figure 10:

Figure 10: Contour of Water Volume Fraction for a Fully Saturated Case at Flow Time 0s

To include the effects in the python model, a series of ‘𝑖𝑓’ statements were

added to the ‘𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑛𝑜𝑤𝐴𝑛𝑑𝑅𝑎𝑖𝑛𝑀𝑎𝑠𝑠𝐹𝑙𝑢𝑥𝑒𝑠’ function. Adding the

thermal property updates to this function made it easy to define conditions,

based on the liquid precipitation amount, variable ‘Pr’. The user of the model

would be required to set a value that indicates if the lower boundary is open

or if it acts as a wall. This condition would then decide which case to draw

 26

values from (0Pa or Solid Wall). As the 0Pa case resulted in negligible

change for some parameters, the total number of ‘𝑖𝑓’ statements required

was less than that of the Solid Wall case.

3.2.4 Moisture Transport Iteration 3

In the third moisture model, to ensure that the movement of water would only

be a function of gravity and soil properties, referred to as Unlimited flow [52],

a water tank was modelled above the outer soil zone. Symmetry boundary

conditions were chosen on either side of the zone, extending the water flow

coverage. Switching from a velocity inlet to a water tank prevented any

external forcing of the water, which affected the accuracy of results. New

gauge pressure values were chosen for the second and third case within this

iteration, of 5000Pa and 10000Pa. As a replacement for the constant inflow

of the velocity inlet, a new strategy had to be developed. Maintaining an

inflow from the water tank for a long flow time would have required a very

large tank area. This in turn would have caused unwanted forcing of the

water into the soil, by the tank’s large body of water. To resolve these issues,

it was decided that patching was the best solution. Using a macro, the water

tank zone was patched to be fully saturated regularly, at every 0.1 seconds of

flow time. Alongside this, the temperature was patched at 275.5K, 0.5K lower

than the surrounding zones. As rain is often colder than the air it falls

through, this patch made the simulation more realistic. Lastly, the velocity of

the fluid in the water tank zone was patched to zero in both the vertical and

horizontal direction, to minimise the impact of a large quantity of water, and

any instability that may cause water to be forced under the soil. The third

iteration’s results indicated that pressure outlet gauge pressure variation did

not provide a suitable range of simulated scenarios.

3.2.5 Moisture Transport Iteration 4

A final fourth moisture model was developed, focusing this time on the

porosity of the soil. 3 new cases were devised. The first varying porosity case

began with a surface layer of soil with 0.4 porosity, a deeper central layer

with 0.3 porosity, and a bottom layer of 0.2 porosity. This was labelled the

’Decreasing Porosity’ case. The other varying porosity case began with 0.2

porosity at the surface layer, 0.3 porosity at the central layer, and 0.4 porosity

at the bottom layer. This was labelled the ‘Increasing Porosity’ case. The

remaining case was labelled the ‘Constant Porosity’ case, with 0.4 porosity

across all of the soil. Again, the cases were patched with a macro command,

although this time a specific cell region was selected. A 40cm layer above the

surface of the soil was highlighted, again bringing the water simulation closer

to reality.

 27

Figure 11: Geometry of 4th Iteration Simulation

The results of iteration found are presented and discussed in Section 4.1.

3.2.6 Time Delay

To understand the implications of time-delay, the geometry of the network of

pipes had to be considered. The system consisted of loops of tubing ~142𝑚

(71m each way) in length running across the width of the field. There were

220 loops in total, each connected to a main inlet and outlet line spanning the

length of the pitch (~107𝑚). The tubing was also buried at 20cm depth.

An imbalance was created between melting of the snow on different sides of

the field, as it took longer for sections further away from the inlet side to

reach the desired temperature. As part of the original paper, the COMEA

research team had developed a model of the pipe network in ANSYS. This

contained the geometry and dimensions. However, the large scale of the

model meant that it was incredibly computationally intensive and time

consuming for the required level of accuracy, necessitating the use of the

supercomputer facilities available to the university. Simple changes to the

geometry or any of the other simulation parameters would have required a

lengthy process of requesting the use of the supercomputer and waiting for

results. Therefore, part of the project involved developing a simple and

accurate way to test changes to the system inputs and track their impact on a

much shorter timeframe and locally, meaning complicated simulations could

be carried out once a final set of conditions had been decided or their use

could be avoided altogether.

Different tools are capable of carrying out those simulations [53], however the

𝑝𝑎𝑛𝑑𝑎𝑝𝑖𝑝𝑒𝑠 package for python was selected for this purpose. After an

empty network was created, the type and properties of the circulating fluid

could be modified to those of the propylene-glycol solution used in the real-

world system. The elements of the network were created starting with

junctions, which behaved as connections between the rest of the

components. The number of junctions were defined alongside the initial

values of pressure and temperature for the calculation. A geodata parameter

was included to provide coordinates for plotting the network and guiding the

connections which were added later. The pipe elements were then added,

joining at the already existing junctions. Pipe dimensions and additional

considerations such as pipe roughness, pressure loss coefficient as the fluid

travels around bends and ambient conditions were also defined.

The network consisted of an inlet and an outlet section which were larger in

diameter, connected by a series of smaller diameter loops. A pump

 28

connecting the inlet and the outlet lines induced a fixed pressure and

temperature at the outlet side while requesting a specific flowrate at the inlet

side. The flow could then be simulated for a defined number of time steps,

and the resulting temperature and pressure at the junctions were recorded.

Figure 12 is a schematic of the network. For simplicity and clarity, a system

consisting only the first 5 loops is presented:

Figure 12: Simple Schematic of Pipe Network System

As hot fluid is supplied through the network, convective heat transfer occurs

between the fluid and the pipes. In turn, conductive heat transfer takes place

with the surrounding soil, increasing the temperature until the surface level

has reached a sufficient temperature to melt the accumulated snow. The aim

of the project is to optimise this process so that the field can be kept in

playing conditions year-round while minimizing the cost of running.

Therefore, the time taken between inducing a temperature difference, ∆𝑇𝑓, at

the inlet and the whole system reaching this state could have significant

implications on energy consumption [54].

Another condition impacting the performance of such systems will be

frictional losses in the piping, such as due to the introduction of bends as well

as imperfections on the surface of the pipes. This was approximated by the

addition of a pressure loss coefficient to the calculation, as shown in Figure

13 from “Steam, its generation and use” by The Babcock & Wilcox Company

[55].

 29

Figure 13: Pressure Losses in Pipe Bends

Using Figure 13 and the dimensions of the pipe, extracted from an ANSYS

model developed by the COMEA Research Group, the pressure loss

coefficient was estimated using the following method:

The internal diameter of pipe, as in the model provided was taken as: 𝑑𝑖 =

22𝑚𝑚 = 0.866 𝑖𝑛.

The centreline radius of bend was approximated from pipe segments with

similar dimensions as: 𝑟𝑐 = 36𝑚𝑚 = 1.41 𝑖𝑛, from [56] [57], and assuming the

angle of bend as 180° the final calculation could be performed:

𝑟𝑐
𝑑𝑖
=
36𝑚𝑚

22𝑚𝑚
= 1.36 ⇒ 𝑁𝑏 = 0.36

[22]

Another key variable was the heat transfer coefficient between the pipes and

the surrounding soil. This depends on a large number of factors, including the

material characteristics of the pipes, the composition of the soil and the heat

conducting medium. Taking those issues into consideration, the heat transfer

coefficient was estimated to be around 𝛼 = 10 𝑊/𝑚2𝐾 [58]. Both parameters

were included in the definition of the pipe elements within the network, giving

significant control over the behaviour they exhibited.

The rest of the input parameters to the simulation are summarised in Table 3:

Table 3: Input Parameters for Time-Delay Simulation

 Parameter Value

Ambient Temperature, 𝑇𝑎𝑚𝑏 0°𝐶

Pump Pressure, 𝑃𝑏𝑎𝑟 3.6 𝑏𝑎𝑟

Temperature Difference Induced by Pump, ∆𝑇𝑓 15°𝐶

Mass Flow Rate of Solution, 𝑚̇ 1𝑘𝑔/𝑠

 30

The simulation was carried out for a number of different input conditions to

include variations in ambient temperature, mass flow rate and the

temperature difference between the inlet and the outlet of the network. The

results of this study were recorded in Section 4.2.

3.2.7 Incorporation of the Heated Pavement Model

The 2007 paper, [2], which introduced a computational heat and mass

transfer model for an underfloor heating system on a pavement, previously

discussed in 2.2.2, included many features and considerations which were

thought to be relevant in the creation of the improved model developed in this

report.

Both the original model and the pavement model followed a similar structure

which included an underground heating element at a specified depth with the

purpose of providing heat to the external surface, either pavement or artificial

grass to melt the acclimated snow which gathers on the surface.

There were several external factors which contributed to the heat and mass

balance equations of both individual models, such as ambient air conditions,

cloudiness, precipitation, solar heating, and sky radiation heat losses. Heat

conduction from the surface layers also contributed to the balance equations.

The first difference between both models which was incorporated was the

consideration of heat transfer of evaporating water or condensed water vapor

which is given by:

𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 = ℎ𝐿𝑉 ∙
𝑚̇

𝐴𝑥𝑦
(𝑤𝑎𝑖𝑟 − 𝑤𝑠𝑢𝑟)

[23]

Where 𝑤𝑎𝑖𝑟 and 𝑤𝑠𝑢𝑟 are the humidity ratios of the ambient air and the

saturated air at the slush surface, respectively.

𝑚̇ is the Mass Flow Rate of Liquid into the Surface [𝑘𝑔/𝑠] given by:

𝑚̇ = Ps ∗ 𝜌𝑤𝑎𝑡𝑒𝑟

[24]

Where 𝜌𝑤𝑎𝑡𝑒𝑟 is the density of water at 1000 𝑘𝑔/𝑚3.

When the calculated 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 value is positive the model can be assumed

to be subject to evaporation and when negative, condensation.

Equation [23] was included in the Python code within the heat balance

equations, shown in Figure 14. This allowed for 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 to be included

within the computational model as part of Equation [5], and the effect of such

is presented and discussed within 4.3. The inclusion of 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 within the

Python code can be seen in Figure 15.

Figure 14: Python code excerpt of Equation [20]

 31

Figure 15: Python code excerpt containing 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 in the heat balance.

Different snow classifications within the current model were also investigated.

Considering the properties of 4 different snowpack classifications: Dry Snow,

Slush Only, Wet and Dry. A counter was included within the Python code in

the form of 𝑖𝑓 statements which allowed for the total number of times snow is

a particular classification across the total time period to be graphed. This

section of code is shown in Figure 18. Figure 16 and Figure 17 show the

classifications of snow before and after any melting due to external factors

and the underfloor heating system had occurred.

Figure 16: Snowpack Classification Before Melting

 32

Figure 17: Snowpack Classification After Melting

It could be observed that prior to melting, the majority of the snowpacks fell

within the Dry Snow or Slush only classification. After melting had occurred

only a small percentage of the snowpack remained un-melted, and the

majority of the snowpack was no longer present. This validated the

effectiveness of the overall underground heating system at being able to melt

any snow present on the surface to a playable condition.

 33

Figure 18: Python code excerpt with Counters for Snow Type

3.2.8 Negation of Snow Distribution

The effect wind had on falling snow was considered within this report. When

snow falls in climates with high wind speeds it is prone to drifting. This means

gathering in mounds at areas and resulting in variation on the depth of the

snowfall, specifically on flat surfaces such as football pitches [59]. "Numerical

simulation and wind tunnel test for redistribution of snow on a flat roof"

discusses and tests the distribution of snow on a flat roof within a wind tunnel

which can simulate various wind speeds [60]. The flat roof within the tests

discussed above can be considered as an equivalent to a flat football pitch,

although the need to acquire this information differs. Structural engineers

require to know the location and volume of snowfall on specific areas of a flat

roof to allow for adequate support for the roof to withstand any pressures. In

this report it was important to understand the distribution of snow on a

football pitch to accurately describe a computational snow model which is

realistic to the various types of snow previously discussed. For example, a

thicker layer of snow will be heavier and therefore compress the air at a

greater rate resulting in chunks of ice forming, the behaviour of the snow will

be taken into consideration throughout.

The effect the wind has on the snow distribution across the football pitch will

be negated throughout this report. The minimum wind speed considered in

[61] is 7m/s, which has very little effect on the movement of snow. The

average wind speed at the Naantali football pitch was assumed the same as

that of the Turku Artukainen weather observation station, as that was the

nearest observation station located around 10km away. Between December

 34

1st 2022 and March 1st, 2023, the average wind speed was 2.86 m/s, [62].

Appendix B – Average Wind Speed and Appendix C – URL for Finnish

Meteorological Institute Website (Download Observations) show the inputs

and URL for the Finnish Meteorological Institute: Download Observations

webpage from which the wind speed data was taken.

The wind’s effect on the distribution of snow was negated within this report

due to 2 reasons. Firstly, due to the average wind speed being significantly

lower than that which was tested within the wind tunnel flat roof example and

the effects being minimal at this higher speed and secondly, considering the

altitude at which wind speed was measured compared to ground level where

snow lies and the interference of surround buildings and ground elevations it

could be assumed that the rate of wind speed at ground level was smaller

and less significant.

3.3 Sensitivity Analysis

3.3.1 Variable Study

The sensitivity analysis allowed for variables which have the biggest effect on

results to be identified, and those which have little, or no impact could be

neglected. Eleven variables were included in this study and for each an array

of 5 values were implemented, shown in Figure 19. The variables considered

were Snow Thermal Conductivity, Turf Surface Emissivity, Snow Liquid

Holding Capacity, Bed Total Depth, Snow Surface Emissivity, Wind Factor

Correction, Snow Saturated Hydraulic Conductivity, Damping Parameter,

Snow Liquid Fraction Initial, Field Midpoint Temperature and Air Density. The

variables were chosen on the basis of exploring the impact of parameters

which are more obscure and therefore much more difficult to measure in the

real-world, rather than ones which have been analysed extensively. This

gave a more complete overview of how the calculations were impacted by

the various data inputs.

Using a loop, the code would run for each value in the variable array and

hex-graphs were plotted for each variable against snow depth prediction. The

plots and results are presented and discussed in Section 4.5.

Figure 19: Python code excerpt of Sensitivity Analysis Values

 35

Figure 20: Python code excerpt of Sensitivity Analysis Results and Plotting

3.3.2 Implicit and Predictor-Corrector Method

The second stage of the sensitivity analysis involved changing the solver

method inside several functions. Within the python code the calculation of 4

different variables were changed from the original explicit solver to both an

implicit and a predictor-corrector solver. The changed variable methods were

for the calculation of 𝑆_𝑠𝑡𝑎𝑟, 𝑚𝑆𝑛𝑜𝑤𝐶𝑢𝑟𝑟, 𝑚𝑊𝑎𝑡𝑒𝑟𝐶𝑢𝑟𝑟 and 𝑚𝑇𝑜𝑡𝑁𝑒𝑤.

The solver was also changed to Modified-Euler Method, a predictor-corrector

method. Predictor-corrector solvers use a combination of explicit and implicit

techniques to obtain the desired solutions.

Consider the ODE:

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)

[25]

The y value is predicted for the next step using:

𝑦𝑡+1,𝑝 = 𝑦𝑡 + ℎ ∙ 𝑓(𝑥𝑡, 𝑦𝑡)

[26]

Where ℎ is the step size.

 36

Using the predicted result, a corrected value is determined.

𝑦𝑡+1,𝑐 = 𝑦𝑡 + ℎ ∙
𝑓(𝑥𝑡, 𝑦𝑡) + 𝑓(𝑥𝑡+1, 𝑦𝑡+1,𝑝)

2

[27]

Figure 21 shows a section of the python code updated for predictor-corrector,

the remainder of the code follows the same format as Appendix G – Python

Code: Original. The overall results from the snow melting model and the

weather predictions were not as close to the real weather data as they were

with the original explicit model.

The solver was also changed to the Backward Euler Method, an implicit

numerical method capable of solving ordinary differential equations. Figure

22 shows a section of the python code updated for implicit, the remainder of

the code again follows the same format as Appendix G – Python Code:

Original.

Figure 21: Python code excerpt of a Predictor Corrector function

The backward Euler methods computes the y-value for the next step using:

𝑦𝑡+1 = 𝑦𝑡 + ℎ ∙ 𝑓(𝑥𝑡+1, 𝑦𝑡+1)

[28]

The results of implementing alternative numerical methods are presented

and discussed in 4.5.2.

 37

Figure 22: Python code excerpt of an Implicit function

3.3.3 Variation of Time Step Size

A sensitivity analysis was performed to determine the optimal time step size

to acquire predicted snow depth results which compare closer to real world

weather data and the current snow melt model. Smaller step sizes give better

accuracy and stability but require greater computational time.

The code was run for 11 different time step sizes, including the original time

step size of 60 minutes. For each different time step size, the code was set to

run 3 times and the computational time for each was recorded. Graphs

documenting the predicted snow depth compared to the recorded snow

depths were also produced. The computational times for each size were

averaged and along with the graphs produced were analysed to determine

the time step size which gives the best accuracy whist maintaining an

appropriate computational time. The results from this are shown and

discussed in 4.5.3.

3.4 Optimisation of Heating System Operating Profile

3.4.1 Design of Experiments

The purpose of carrying out the Design of Experiments (DoE) was to create a

set of randomised weather scenarios which could be used in the Decision

Trees Machine Learning Model, to then produce the optimal control inputs for

temperature and liquid flow rate. This would allow the testing to capture a

wide range of conditions including extremes, which are unlikely to occur in

the real world, and monitor the stability of the system response.

LHS was selected as the method to carry out the DoE, the underlying

process behind which is described in detail in Section 2.8.

To briefly describe how the DoE was carried out, the weather data was

imported into Python as a csv file. From this, the maximum and minimum

values for each weather parameter were extracted and set as the limits for

the LHS method. The parameters chosen for this were: Cloud Amount (1/8),

 38

Precipitation Amount (mm), Precipitation Intensity (mm/h), Snow Depth (cm),

Air Temperature (℃) and Wind Speed (m/s). The control inputs, ∆𝑇 (℃) and

Liquid Flow Rate (l/s) were also included in the random sampling as this

provided additional considerations to the decision tree model.

The sampling was performed for 168 iterations, generating a range

equivalent to 1 week of data. Due to the random nature of the sampling,

some additional constraints had to be introduced to accommodate for the

creation of unrealistic weather scenarios, such as heavy rainfall when Cloud

Amount = 0, or decreasing the control inputs when snow cover is high.

Precipitation Amount and Precipitation Intensity had to also be maintained

within a small range of each other as Precipitation Intensity is simply the

average of the Precipitation Amount over 1 hour.

To measure the efficiency of the randomly selected control inputs for the

random weather samples, both inputs were made constant for the 1-week

duration, and the new data was used in the code for the original simulation to

extract the final values for the energy consumption and snow depth. The aim

of the DoE was to minimise the energy consumption while also minimising

the snow depth, therefore it was important to identify where the limits for

those parameters should be set. The threshold value for the depth of snow at

which the field could still be considered in playing conditions was identified as

0.1 𝑐𝑚. For energy consumption, the required value was selected as the

average of the random samples. Cases where the control inputs produced

results which were below the threshold for both parameters were assigned a

value of 1, and the rest of the cases were assigned 0. This True/False

designation was implemented to help significantly simplify the machine

learning training process.

This method was carried out in 2 different stages. The first stage involved

running this setup to generate 500 data points, each containing the constant

weather and control inputs alongside final energy consumption and snow

depth after a 1-week simulation. The ranking system described above was

then implemented, creating the input required for training the decision tree

model. After the training was carried out and the results were validated, as

described in Section 3.4.2, the Design of Experiments was expanded to 3000

samples and the training process was repeated with the aim of improving the

accuracy of the model.

3.4.2 Decision Trees

Using an automated learning mechanism in the form of a regression decision

tree, trends in weather conditions against Δ𝑇 [℃] and Liquid Flow Rate

[𝑘𝑔/𝑠] of the fluid in the pipes were identified.

The simulated weather data and control inputs were imported into the python

code in the form of the output csv file from the Design of Experiments. This

provided an array of values which, with the array of True/False designations

assigned based on the corresponding values of final snow depth and energy

consumption, were split into random train and test subsets as part of the

′𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡′ tool for python. The weather data

and control inputs contained the features (𝑥), and the ranking made up the

 39

labels (𝑦). Each was then split again into 𝑥_𝑡𝑟𝑎𝑖𝑛, 𝑥_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑟𝑎𝑖𝑛, and 𝑦_𝑡𝑒𝑠𝑡.

The train dataset accounted for 80% of the data and was used for training the

model to predict. The test dataset accounted for the remaining 20% of the

data and was used to test if the predictions were returning correct values.

The regression model was initialised using a ′𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒′ parameter,

which was used to control the random number generator. Working similarly to

the way it was used for ‘𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡()’, this parameter was important in

ensuring reproducibility of the results. A value of 𝑁𝑜𝑛𝑒 for the random state

would have produced a new set of decisions each time the script was

executed. Using an integer instead allowed results to be reproducible over

multiple simulations. Before the results of the large dataset could be

analysed for the creation of the guidance document, suitable validation had

to be carried out to confirm the accuracy of the predictions. For this purpose,

a smaller set of only 10 data points was created using the DoE method

described in Section 3.4.1. The algorithm, only trained on the large dataset,

was then used to predict whether the control inputs would produce the

required level of snowmelt for energy consumption below the average value.

The new predictions, for a dataset which the algorithm was not trained on,

were found to be at least 80% accurate, and even higher in some of the test

cases. Due to the complicated nature of the relationship between the weather

parameters and control inputs this level of accuracy was deemed acceptable,

as small differences in any of the conditions could yield significant changes in

the results.

The output of the script was in the form of a flowchart, which could be plotted

using 𝑤𝑒𝑏𝑔𝑟𝑎𝑝ℎ𝑣𝑖𝑧, a software package for the visual representation of

decision trees. However, the resulting flowchart had to be arranged and

simplified so it could be presented in the form of a guidance document which

can be used by a non-specialist human operator to select the most optimal

control actions for any given weather conditions. This was done manually, by

following the different branches of the decision tree until a predicted value of

1 was reached and tracing back the weather parameters and control inputs

which were involved in reaching that outcome. Once all the cases were

collected, they could be grouped by weather parameters for the final

document.

 40

Figure 23: Python code excerpt of Decision Tree Training

 41

Figure 24: Example of a Decision Tree Flow Chart

 42

3.4.3 Finding True Optimal Results

The processes described in 3.4.1 and 3.4.2 which led to the creation of a

guidance document which could be used by a non-specialist human operator

to determine optimal control inputs, Δ𝑇 and Liquid Flow Rate, allowed for the

football pitch to be heated to playable conditions with minimal energy

expenditure. The optimal controls determined through this process were

limited and approximated for large ranges of weather conditions and

therefore the guidance document produced for the operator was very

general.

To progress the results produced by the decision tree a complicated machine

learning process was undertaken, which used the results of the DoE as

inputs to maintain consistency within the study.

The complicated machine learning approach did not require knowledge of

specific weather and control scenarios and if the final snow depth of the

football pitch and energy consumption were optimal. Instead, it sought to

predict what control parameters should be used in an optimal scenario for

every given weather parameter, for a minimum of a week in advance.

This was achieved by selecting every case generated by LHS for which it

was possible to find an acceptable final snow depth with an acceptable

energy consumption, cases which returned values equal to 1 for both final

snow depth and energy consumption from the decision tree. From the LHS

case of 3000 iterations, 1211 optimal iterations were used within the

complicated machine learning training data.

Following a similar approach to that of the decision tree which used the

′𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡′ tool for python with the weather

data and control variables as (𝑥), and the 1 and 0 ranking values as (𝑦).

Instead, the weather data was set as the input (𝑥) and the control

parameters, as the target (𝑦). Using the regression model, described in 3.4.2

control parameter predictions were made for generated weather scenarios,

based on the optimal situations the solver was trained with. Figure 25

contains the python code used to train and determine optimal control

parameters.

 43

Figure 25: Python code excerpt for the True Optimal Control Decision Tree

 44

4.0 Results and Discussion

4.1 Moisture Transport

4.1.1 Choosing a Suitable Depth of Soil

The results for the moisture transportation study introduced in 2.6 are

presented and discussed in the following section.

Below, Figure 26 and Figure 27 present the results generated during the

initial analysis of ideal soil depth. The graphs produced represent the Area-

Weighted Average of Water against Flow time, in seconds for a depth of 2m

and 7m respectively.

Figure 26: Outer Soil Water Fraction Report for 2m Depth

Figure 27: Outer Soil Water Fraction Report for 7m Depth

It can be observed from the results produced that water took longer to drain

from the outer soil in the 2m case, despite having a smaller depth,

suggesting that the pressure outlet for 2m was having an impact on

accuracy. Therefore, the 7m soil depth was chosen going forward.

4.1.2 Iteration 2 Results

The results of one example case of the second iteration of the moisture study

are shown in Figure 28, Figure 29 and Figure 30. This case had lower

pressure outlets of 0Pa with a velocity inlet flow of 2.5mm/h.

Figure 28 shows the area-weighted average water content of the inner soil

zone against flow time, in seconds. Figure 29 and Figure 30 show the area-

 45

weighted average of thermal conductivity, (𝑊/𝑚𝐾) and temperature, (𝐾)

against flow time, respectively.

Figure 28: Area Weighted Average Water Content of the Inner Soil Zone at 0Pa Gauge Pressure and a

2.5mm/h Velocity Inlet (2nd Iteration)

Figure 29: Area Weighted Average Thermal Conductivity of the Inner Soil Zone at 0Pa Gauge Pressure

and a 2.5mm/h Velocity Inlet (2nd Iteration)

Figure 30: Area Weighted Average Temperature of the Inner Soil Zone at 0Pa Gauge Pressure and a

2.5mm/h Velocity Inlet (2nd Iteration)

Within these 3 reports very little was observed. This is due to the minute

quantity of water entering through the velocity inlet. The second iteration was

 46

repeated for the remaining 15 cases, with precipitation amount spanning

0.5mm/h to 25mm/h, and gauge pressures set as 0Pa, 50Pa, 100Pa. 4 of

these cases also used a solid wall in place of the boundary, as discussed in

Section 3.2.3. Another example case with lower pressure outlets at a gauge

pressure of 50Pa and 2.5mm/h precipitation amount is shown below. Figure

31 shows the area-weighted average water content of the inner soil zone

against flow time, in seconds. Figure 32 and Figure 33 show the area-

weighted average of thermal conductivity, (𝑊/𝑚𝐾) and temperature, (𝐾)
against flow time, respectively.

Figure 31: Area Weighted Average Water Content of the Inner Soil Zone at 50Pa Gauge Pressure and
a 2.5mm/h Velocity Inlet (2nd Iteration)

Figure 32: Area Weighted Average Thermal Conductivity of the Inner Soil Zone at 50Pa Gauge
Pressure and a 2.5mm/h Velocity Inlet (2nd Iteration)

Figure 33: Area Weighted Average Temperature of the Inner Soil Zone at 50Pa Gauge Pressure and a
2.5mm/h Velocity Inlet (2nd Iteration)

It can be concluded from the above results that an increase in gauge

pressure at the lower pressure outlet boundaries to 50Pa, did not produce a

significant change in the movement of water. This case and the 100Pa gauge

pressure case were omitted when processing the results of the second

moisture model.

 47

While the use of a velocity inlet was a more suitable situation than a complex

rain simulation, it still resulted in artificial forcing of the water, as discussed in

Section 3.2.3. Continuing with the second iteration, the outer domain was

patched to be fully saturated with water, and the inner soil volume over time

was recorded, and plotted in Figure 34 and Figure 35, which show the 0Pa

and the Solid Wall case.

Figure 34: Inner Soil Volume Report for 0Pa Case

Figure 35: Inner Soil Volume Report for Solid Wall Case

Average water content over 1 hour was calculated from the reports shown in

Figure 34 and Figure 35. For the 0Pa case, the peak water content divided

by the time to drain was multiplied with the remaining water content divided

by remaining time in 1 hour. For the Solid Wall case, the average was found

using the water content at 100 second intervals over an hour. Based on

these results, and the difference between pure air and pure water properties,

the new soil properties were calculated. These are shown in Table 4:

 48

Table 4: Water Volume Fraction by Case, with Corresponding Property Changes, over 1 hour

Case 1 2
Case Type 0Pa Solid Wall
Maximum inner water content (fraction) 0.0025 0.3327
Time to drain (inner) [𝑠] 5 ~2100
Average water vol 1hr (fraction) 3.47222𝑒−6 0.054
Average Thermal Conductivity (mix)
[𝑊/𝑚𝐾]

0.219680008 0.219804373

Average Density (mixture) [𝑘𝑔/𝑚3] 1.2250346 1.7633665
Average Cp (mixture) [𝐽/𝑘𝑔𝐾] 1006.43011 1008.144808
Average Temperature (mixture) [𝐾] 275.9999999 275.99892

To convert these new fluid mixture values into values that could be added to

the python code, further processing took place.

The water content entering the inner soil was first scaled according to more

realistic rainfall amounts. This was achieved by dividing by a fraction of

rainfall depth after 1 hour and the depth of the lower soil boundary. These

results were recorded in Table 5 and Table 6 for the 0Pa and Solid Wall

case, respectively. This allowed the actual amount of water relative to the

saturated condition to be reflected properly.

Table 5: Scaled Water Volume Fraction and Property Changes for 0Pa

0Pa Scaled 0.5mm/h 2.5mm/h 5mm/h 25mm/h

Water content

(0.0005/7) x
water content
(and effect) =
2.48 ∙ 10−11

(0.0025/7) x
water content
(and effect) =
1.24 ∙ 10−10

(0.005/7) x
water content
(and effect) =
2.48 ∙ 10−10

(0.025/7) x
water content
(and effect) =
1.24 ∙ 10−9

Thermal
Conductivity
Change (mix)

Negligible Negligible Negligible Negligible

Density Change
(mix)

1.225000025 1.225000124 1.225000247 1.225001236

Cp Change (mix) Negligible Negligible 1006.430001 1006.430004

Temperature
Change (mix)

Negligible Negligible Negligible Negligible

 49

Table 6: Scaled Water Volume Fraction and Property Changes for Solid Wall

Wall Scaled 0.5mm/h 2.5mm/h 5mm/h 25mm/h

Water
content

(0.0005/7) x
water content
(and effect) =
3.857 ∙ 10−6

(0.0025/7) x
water content
(and effect) =

1.928 ∙ 10−5

(0.005/7) x
water content
(and effect) =

3.857 ∙ 10−5

(0.025/7) x
water content
(and effect) =
1.928 ∙ 10−4

Thermal
Conductivity
Change (mix)

0.219680888 0.219684441 0.219688884 0.219724406

Density
Change (mix)

1.228845475 1.244221678 1.26345475 1.41721678

Cp Change
(mix)

1006.442249 1006.491225 1006.552486 1007.04225

Temperature
Change (mix)

275.9999923 275.9999614 275.9999229 275.9996144

For the implementation of these results, each property to be updated was

defined as a global variable within the ‘CalculateSnowAndRainMassFluxes’
function, and then reset to default values at each timestep, to simplify the

constant update process. The porosity of 0.4 was necessary to consider, as

the ratio of soil properties to fluid mixture properties needed to be accounted

for. In the python code, it was assumed that each soil layer was composed of

60% soil and 40% air. This meant that estimated thermal properties were an

average between the soil and the fluid mixture. Before creating conditional

statements in the python code, the expected change to average thermal

properties was found by inserting the updated fluid mixture value of each

property into the calculation.

Initial implementation steps are shown in Figure 36:

 50

Figure 36: Python code excerpt of Moisture Transport Thermal Property Updates (Part 1)

‘If’ statements were then added, to automatically alter thermal properties

across soil domains at each timestep, based on moisture content. The initial

properties were acquired and validated from a variety of sources researched

as part of the literature review process [63-68].

Figure 37: Python code excerpt of Moisture Transport Thermal Property Updates (Part 2)

 51

Figure 38: Python code excerpt for Moisture Transport Thermal Property Updates (Part 3)

Figure 39: Python code excerpt for Moisture Transport Thermal Property Updates (Part 4)

As mentioned in Section 3.2.3, the number of statements required for the

0Pa case shown in Figure 37 was less than in the Solid Wall case shown in

Figure 38 and Figure 39, due to some properties seeing negligible change.

The statements also permitted the user to set a depth value for the soil,

which would change the scaling applied to each property update. This way,

when simulating smaller soil depths, the average water content would be

higher and thermal properties would subsequently increase by larger

amounts on average.

After the inclusion of conditional statements, a small improvement in model

prediction of snow depth was visible. Despite the removal of the velocity inlet

and more natural flow of water, this iteration lacked the ability to model

continuous realistic precipitation. The third iteration setup, discussed in

Section 3.2.4 would be a combination of the 2 previous iterations.

4.1.3 Iteration 3 Results

The results of the third iteration of underground moisture transport are

presented below. Figure 40, Figure 41, Figure 42 and Figure 43 show the

water content against flow time, in seconds, for the 0Pa, 5000Pa, 10000Pa

and Solid Wall case respectively.

 52

Figure 40: Water Content 0Pa Case

Figure 41: Water Content 5000Pa Case

Figure 42: Water Content 10000Pa Case

Figure 43: Water Content Solid Wall Case

Each pressure outlet variation showed a similar peak of 2% water content in

the inner soil, followed by a drop, which remained stable after 5 seconds. The

Solid Wall case displayed an expected gradual increase in water content

below the pitch, levelling off at around 80%. The peak represented the initial

instability of water motion as it first entered the porous medium. After this

initial period, the water settled, following a consistent path that did not

penetrate as far horizontally. Again, the similarity between gauge pressure

outlet cases, even with high values chosen, suggested that an increased

outlet gauge pressure had little effect on water motion. For the final iteration,

a change in the varying parameter was therefore deemed important.

 53

This iteration also had room to be developed, as the quantity of water being

regularly patched above the soil was still quite large.

4.1.4 Iteration 4 Results

The results of the fourth iteration of moisture simulation are shown below.

Figure 44 and Figure 45 show the area-weighted average water content and

the area-weighted average temperature, for decreasing porosity, against flow

time, in seconds. Figure 46 and Figure 47 show for constant porosity and

Figure 48 and Figure 49 show the results for increasing porosity.

Figure 44: Area Weighted Average Water Content for Decreasing Porosity

Figure 45: Area Weighted Average Temperature for Decreasing Porosity

 54

Figure 46: Area Weighted Average Water for Constant Porosity

Figure 47: Area Weighted Average Temperature for Constant Porosity

Figure 48: Area Weighted Average Water Content for Increasing Porosity

 55

Figure 49: Area Weighted Average Temperature for Increasing Porosity

It could be seen from the water content results, that when a reduced porosity

is partially modelled in the soil domain, the peak water content in the inner

soil increases. An increase of around 0.2% is visible in the increasing

porosity case, and around 0.4% in the decreasing case. The constant

porosity case experiences an increase in inner soil water content, and a

decrease in temperature at around 7 seconds, because of numerical error in

the simulation. This could be rectified by further decreasing the mesh size.

The effect of changing the porosity is still minimal, despite using the full

ordinary range of soil porosities in this scenario (0.2-0.4).

Focusing on Figure 49, and assuming both that the initial area-weighted

average temperature of the soil cross section beneath the pitch was an

ambient temperature of 276K, and that water entering this zone horizontally

was 275.5K (as rain is often colder than ambient temperatures), the soil

average temperature settled at a constant of 0.028K lower than when dry. In

Figure 48, water content beneath the pitch settled at 2% to 3% of the total

area.

Factoring in the potential rainfall amounts mentioned previously, the soil

would receive even less water than a 40cm zone patched every 0.1s. For

these reasons, the conclusion was that moisture transport ultimately has a

negligible impact on the thermal properties of the soil beneath the pitch and

was therefore not included in refinement of the python model. Existing

conditional statements added to the python code during the second iteration

of the moisture study were removed.

One of the most significant challenges which arose when modelling rainfall,

was the time required to complete each simulation. Mesh refinement helped

to find a good compromise between accuracy and simulation time, however

the model was still quite complicated. Adapting the geometry further to only

include important areas of study reduced the computational time of

simulations. For the final case, we split the task between group members,

with each person running one of the 3 cases. This collaborative effort further

sped up the process.

 56

4.2 Time Delay Imbalance
The model described in Section 3.2.6 was used to simulate a variety of

cases, modifying different input parameters and assessing their impact on

the time delay. Running the simulation as detailed in the original case (Table

3), the following results were obtained:

Figure 50: Temperature Variation at Exit Junction

In the original paper published by the COMEA research group [1], a

temperature increase, ∆𝑇 = 7°𝐶 resulted in 92.9% of snow-free time. This

was taken as the increase in temperature required at all junctions to consider

the field in playing conditions. Figure 50 shows the temperature variation

over time at the junction furthest away from the pump, just before the fluid is

returned to the outlet line and eventually to the pump to be reheated. The

dashed grey lines show the time taken to reach the required value, which in

this case was just over 7 hours.

The presence of ∆𝑇 and Liquid Flow Rate as variables in the Mass and

Energy Balance Equations meant that adapting the existing code to include

the time delay in distribution of temperature could help improve the predicted

values of snow depth.

Table 7 further showcases the variation in time-delay for various ambient

temperatures:

Table 7: Impact of Ambient Temperature on Time-Delay

Ambient Temperature, 𝑻𝒂𝒎𝒃 [°𝑪] Time Taken, [𝑯𝒐𝒖𝒓𝒔]

0 7.32
−5 11.38
−10 15.4
−15 19.39

 57

Based on these results, there is a significant increase in time duration for

lower ambient temperatures. Prior knowledge of the weather conditions

based on forecast data can help minimise the impact of this as the system

could be activated earlier to accommodate for any delay.

A similar study was conducted on the impact of mass flow rate of the solution

and the temperature difference between the inlet and outlet temperatures,

the results of which are summarised in Table 8 and Table 9, respectively.

The remaining inputs were kept constant, as described in the original case.

Table 8: Impact of Mass Flow Rate on Time-Delay

Mass Flow Rate of Solution, 𝒎̇ [𝒌𝒔/𝒔] Time Taken, [𝑯𝒐𝒖𝒓𝒔]

1 7.32
0.8 9.39
0.6 12.84
0.4 19.75

Table 9: Impact of Temperature Difference Between Inlet and Outlet on Time-Delay

Temperature Difference Induced by
Pump, ∆𝑻𝒇 [℃]

Time Taken, [𝑯𝒐𝒖𝒓𝒔]

20 4.97
16 6.65
15 7.32
12 10.9
10 17.43

In all 3 cases, there was a significant increase in the time taken for the full

network to reach the required temperature as the input parameters were

reduced. However, while changes in the ambient temperature cause a steady

increase, the liquid flow rate and temperature difference appeared to have a

more substantial effect at their respective lower values. In both cases,

decreasing the inputs further showed that it would not be possible to reach

the threshold temperature, so those values were discarded. A significant

contribution to this result was made by the fact that while one parameter was

being tested, all other inputs remained the same. In both cases of changing

control inputs, the calculation assumed that the ambient temperature remains

constant at its original value of 0 ℃ the entire time, something which would

not be reflected in the real world. This showed the limitations of this type of

analysis. The development of a more complicated model which updates the

ambient temperature automatically within the calculation could make up

future work on the subject. On the other hand, when simulating for lower

ambient conditions, the controls would not be kept constant but increased as

the temperature decreased, once again reducing the time it would take for

the real system to reach the required temperature.

It is also important to note that some of the variables used in the simulation,

such as the pressure loss coefficient and the heat transfer coefficient of the

 58

pipes were estimations rather than exact known values. This introduced

some level of uncertainty, which although small, could have had an impact on

the final result. A more robust approach would be to use the large scale

Ansys model developed by the COMEA research team for the specific

geometry of the field to acquire those parameters. However, the

requirements of running such a complicated simulation were found to far

outweigh the benefits, as similar results could be produced using the model

developed as part of this project for a fraction of the computational time and

requirements.

Taking the above into account and modifying the original code to incorporate

time delay, it was found that there were negligible changes in the snow depth

prediction when the system was activated sufficiently early. However, the

more accurate representation of the transportation of fluid allowed for more

precise calculation of the energy consumption at each time step, as this is

directly dependent on the values of ∆𝑇 and the liquid flow rate. This could

become an important factor in the comparison between the energy

expenditure of a fixed heating system and one based on the true optimal

control developed as part of this project. Sections 4.8 and 4.9 describe how

this issue was tackled and the results of the evaluation.

4.3 Evaporation and Condensation

The effect the addition 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 had on the snow melting model, previously

discussed in Section 3.2.7 can be observed in Figure 51 to Figure 54

inclusive.

Figure 51 and Figure 52 show the measured snow depth compared to the

predicted snow depth for computational models with and without the

consideration of evaporation and condensation. Both graphs display similar

levels of accuracy, with the case without evaporation or condensation ranking

just slightly higher. Accuracy was determined from these graphs by

comparing the predicted snow depth (black line) to the measured snow depth

(blue line).

 59

Figure 51: Measured and Predicted Snow Depth [Without 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑]

Figure 52: Measured and Predicted Snow Depth [With 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑]

The addition of 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 resulted in very minimal changes but still

decreased the overall accuracy. This can be further shown by comparing

Figure 53 and Figure 54 which show little to no difference in the measured

and predicted temperatures with the inclusion of the effects of evaporation

and condensation. The calculated value of 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 was negative for each

time step which confirmed that it was condensation of the water vapor within

the snowpack that was occurring, however small that amount may have

been. This reduction in precision could be attributed to errors in observational

data [69], leading to exploration of other techniques for calculating

evaporation [70, 71], but ultimately no definitive solution was found.

 60

It could therefore be concluded that the amount of surface precipitation which

was subject to condensation was minimal due to the ambient air conditions

and water content present within the snowpack.

Figure 53: Measured and Predicted Temperature [Without 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑]

Figure 54: Measured and Predicted Temperature [With 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑]

Although the effect that 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 had on the overall heat and mass

balance model was minimal for the current weather data, it will remain

present within the Python code and computational model to support any

future time period where weather conditions may cause it to have a larger

impact.

The small effect the inclusion of 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 had within the current

computational model suggested that the snowpack was not subject to

 61

extreme cases of evaporating water or condensing water vapor, for the

specific timeframe the study observed. The refinement of the computational

heat and mass transfer model only looked at weather data from January 1st,

2023, to March 31st, 2023. Evaporation is more noticeable with snow in

weather conditions where the air temperature is above frozen, but not too

high that the snowpack has melted. By considering longer or different periods

where the weather conditions meet the evaporation requirements would

show a much greater effect 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 has on the overall accuracy.

4.4 Comparison To Existing Code
Additional validation had to be carried out for the modified version of the code

so the impact of the changes could be suitably evaluated in comparison to

the original code. For a time-step size of 60 minutes, the simulation results

were compared for 2 sets of weather data: 1st January 2021 – 31st March

2021 and for the same period in 2023. This allowed for direct assessment of

the accuracy between the 2 versions of the script and identification of further

areas of improvement. Figure 55 and Figure 56 show the first set of results:

Figure 55: Original Code Predictions for 2021 Data

Figure 56: Modified Code Predictions for 2021 Data

From the comparison carried out it was found that the incorporation of the

additional features into the snow melting model significantly reduced

 62

overprediction, which took place in the data around the second half of

February, by around 5 𝑐𝑚. In addition, while no noticeable improvements

were made in the prediction for March, the trends in weather in January were

captured more accurately, once again reducing the initial overprediction

which happened in the original code. It is important to note that such

overpredictions could have a notable impact on the energy consumption, as

the model would predict much higher heating requirements. Even marginal

reductions could mean large savings in energy costs when measured over

the full duration of the simulation. Moreover, establishing the limits of

operation was one of the objectives of this report, as there would inevitably

be cases where the heating system would not be able to melt all of the snow,

therefore any time spent running the system in those cases would lead to

significant energy expenditure but no improvement in the playing conditions.

Inaccurately predicting such cases could lead to longer periods where the

field has to be taken out of service as the snow accumulated in reality could

have been melted. The same period was also simulated for 2023 to test the

stability of the predictions, shown in Figure 57 and Figure 58:

Figure 57: Original Code Predictions for 2023 Data

Figure 58: Modified Code Predictions for 2023 Data

The same trends were observed in the new results, with significantly different

weather conditions. Analogous to the plot of 2021 data, overpredictions of

 63

snow depth were significantly reduced when using the modified version of the

code, as observed in the January period. In this case, both versions of the

code failed to predict the significant increase in snowfall in the second half of

February and March period. This could have perhaps been attributed to

unexpected shifts in weather patterns in recent years due to the effects of

climate change. Some of the functions used in the calculation contained

variables which were very sensitive to weather phenomena and may have

not been accurately reflected in the conditions for the chosen study period. In

addition, as discussed in Section 3.3.1, the simulation depended on many

obscure parameters which are often difficult or almost impossible to measure

in the real world but nevertheless carry significant implications on accuracy.

Further improvements could be made through developing methods of more

accurately representing those values, replacing the existing ones based on

ranges or estimations.

4.5 Sensitivity Analysis

4.5.1 Variable Study

This following section presents and discusses the results of the variable

study introduced in 3.3.1. The hex-graphs produced for each variable are

presented and ranked by order of sensitivity, in Table 10 and Table 11.

Reading each graph in columns from left to right, the distribution of samples

for various snow depth predictions was mapped. For each new value of 𝑥,

the variation from the same point at the previous 𝑥-value determined the

sensitivity of the solution to the parameter. For example, Snow Thermal

Conductivity was deemed to be more sensitive than Turf Surface Emissivity,

due to the varying composition of colours moving across 𝑥 values. Similarly,

the plot of Air Density had more consistency moving left to right and was

therefore deemed to have contributed less significantly to the overall results

compared to Snow Thermal Conductivity.

Table 10: Result Plots of Sensitivity Analysis

 64

 65

Table 11 presents all the results of the variable study. Each variable included

in the study was ranked from most to least sensitive using the hex-graphs

above.

Table 11: Results of Variables Study Ranked from Most to Least Sensitive

Ranked Position Variable Units

1 Snow Thermal Conductivity 𝑊/𝑚𝐾

2 Turf Surface Emissivity -

3 Snow Liquid Holding Capacity -

4 Bed Total Depth 𝑚

5 Snow Surface Emissivity -

6 Wind Factor Correction -

7 Snow Saturated Hydraulic Conductivity 𝑚/𝑠
8 Snow Liquid Fraction Initial -

8 Damping Parameter -

9 Field Midpoint Temperature ℃

9 Air Density 𝑘𝑔/𝑚3

It is important to note that the higher ranked variables are often estimations

from graphs or ranges of possible values, such as snow thermal conductivity,

turf surface emissivity and snow liquid holding capacity. As the code is most

sensitive to these variables and the effect on the results is therefore greater,

caution must be taken when selecting appropriate values. Those variables

are also often interconnected by complicated relationships, for example

surface emissivity will change depending on the solar radiation on a

particular day. This means that the values would have to be updated

continuously at every time-step in the simulation, rather than retaining the

constant value assigned at the beginning. Future work could focus on

updating the script to replace some of the more sensitive variables with new

estimations which will result in more accurate snow depth predictions.

It was noted that even low-ranking variables still visibly impacted the snow

depth solution in this analysis. For this reason, removal of variables to reduce

computational time was not considered as an option.

 66

4.5.2 Implicit and Predictor-Corrector Method

Alternative numerical methods, previously discussed in 3.3.2 were

implemented to compute the snow balance model. Accuracy of a method

was determined by the predicted snow depth graphs. An ideal and most

accurate graph would have the predicted snow depth (black line) identical to

the measured snow depth (blue line). Figure 59 shows the results produced

by the original explicit method model.

Figure 60 shows the results produced by the Implicit method, and although

more accurate and truer to the real-life data than the results obtained from

the predictor-corrector method, Figure 61, the accuracy of the implicit method

is not as precise as the original explicit method. In both cases the trends are

captured differently, as slopes instead of straight lines, and further

improvements could be made by introducing additional levels of complexity to

the solvers [72]. Nevertheless, both approaches fail to improve on the original

method.

For this reason, a decision was made to not progress any further with the

alternative solvers, but to instead begin to improve upon the computing time

and accuracy within the explicit solver through a sensitivity analysis studying

the variation of time step size discussed in 4.5.3.

Figure 59: Explicit Method

 67

Figure 60: Implicit Method

Figure 61: Predictor-Corrector Method

4.5.3 Variation of Time Step Size

Table 12 shows the variation of computational time of the python code with

varying time step sizes, the methodology of which was discussed in 3.3.3.

For each time step size, the code was executed 3 times, and an average of

the recorded computational times was calculated.

 68

Table 12: Variation of Time Step Size with Computational Run Time

Time
Step Size

(min)
Time 1 Time 2 Time 3 Avg. Time [sec]

Accuracy of
Results

180 9.8987696 10.2833476 10.4838072 10.2219748 UNSTABLE

170 10.2275422 10.1487798 10.0650485 10.1471235 UNSTABLE

125 11.0272375 11.5079219 12.4770695 11.67074297 UNSTABLE

120 10.0628477 11.061905 11.3324518 10.81906817 Similar

90 11.276005 11.4905825 11.3867072 11.38443157 Similar

60 14.4811299 14.1855643 13.8547635 14.17381923

30 18.9880579 18.6461951 18.5381286 18.7241272 More Accurate

20 26.7890872 25.2854188 24.6379858 25.5708306 More Accurate

15 36.4005352 34.970359 35.4149082 35.59526747 More Accurate

10 45.5436176 39.3475056 45.8171928 43.56943867 More Accurate

8 57.6534594 56.9973805 56.6516055 57.10081513 More Accurate

The last column of Table 12 describes the accuracy of the results at each

time step compared with the results at the original time step size of 60

minutes, shown in Figure 62. Accuracy was determined by comparing the

graphs produced. An ideal and most accurate graph would have the

predicted snow depth (black line) identical to the measured snow depth (blue

line). Figure 62 to Figure 65 inclusive present the graphs produced for each

time step size investigated. As expected, all time steps sized greater than 60

minutes produced results on par or to lesser quality. At time step sizes

greater than 120 minutes, the simulation became unstable and did not

produce adequate results.

The most stable time step size which also produced the most accurate

results was 8 minutes, shown in Figure 65. Compared with the original time

step size of 60 minutes, in Figure 62 the differences in results when the time

step size was decreased can be seen.

Figure 62: Measured and Predicted Snow Depths for a Time Step = 60 minutes

 69

Figure 63: Measured and Predicted Snow Depths for a Time Step = 125 minutes

Figure 64: Measured and Predicted Snow Depths for a Time Step = 20 minutes

Figure 65: Measured and Predicted Snow Depths for a Time Step = 8 minutes

 70

Although a time step size of 8 minutes came with the improved accuracy, it

also came with a greater computational run time, 57 seconds compared to 14

seconds for the original time step size.

Although less than 1 minute was a reasonable computational time when the

code was only running one time, when developing the code to reflect the

improved snow and mass balance model, the code was required to be run

multiple times for each addition to be implemented and verified.

An alternative compromise would be using a slightly greater runtime than the

original 14 seconds which still produces improved results, such as a time

step size of 20 minutes which takes less than 26 seconds to run. The results

shown in Figure 64 show a greater accuracy within the model and therefore

were what was used moving forward for the remainder of the computational

model refinement.

4.6 Latin Hypercube Sampling
The processes of the LHS within the DoE described in 3.4.1 allowed for csv

files of weather data to be generated randomly based on an input consisting

of real life weather data taken from the Turku Artukainen weather observation

station between December 1st 2022 and March 1st, 2023. This process was

undertaken and validated for 500 and 3000 iterations. Each iteration

represented a week.

Table 13 shows the results of 10 iterations or weeks which the LHS process

was followed with the addition of the Final Snow Depth (m) and Energy

Consumption (J) columns which were calculated by using the weather data

generated within the improved snow melting model.

Table 13: LHS Results for 10 Weeks

C
lo

u
d

 A
m

o
u

n
t

(1/8)

P
recip

itatio
n

A

m
o

u
n

t (m
m

)

P
recip

itatio
n

In
te

n
sity (m

m
/h

r)

Sn
o

w
 D

e
p

th
 (cm

)

A
ir T

em
p

eratu
re

(°C
)

W
in

d
 Sp

eed
 (m

/s)

Δ
T (°C

)

Liq
u

id
 Flo

w
 R

ate

(m
/s)

Fin
al Sn

o
w

 D
e

p
th

(m

)

En
ergy

C
o

n
su

m
p

tio
n

 (J)

3 2.5 0.4 2.4 -9.1 2.4 8.0 1.0 0.1 36295803

3 0.3 4.1 8.4 4.9 4.2 18.6 0.0 0.0 3908021

2 2.3 4.8 9.5 -5.8 0.8 18.3 0.8 0.1 69762325

1 0.8 2.6 2.6 -0.4 1.8 13.2 0.2 0.1 10485458

6 1.0 2.3 7.0 4.0 7.2 4.6 0.4 0.0 9421671

3 1.2 0.3 0.9 3.5 6.9 17.0 0.9 0.0 69033129

5 2.9 3.2 3.6 -13.8 2.2 18.6 0.8 0.2 72688946

4 0.8 4.5 2.7 7.1 3.2 14.6 0.1 0.0 5506162

 71

The results from the LHS simulated weather data for 𝑁 number of weeks,

which were comparable to real life weather observations downloadable from

the Finnish Meteorological Institute or any other weather source. It was used

as the input data for training the decision tree and complicated machine

learning and therefore had to be as close to replicating real life weather

trends as possible.

When developing this method some constraints were applied. Each iteration

represented 1 week of constant weather data. This is not how weather

behaves and therefore it did not fully represent weather trends accurately.

Future work could develop a Design of Experiments which allows for weather

to vary over time, days, or weeks.

Another limitation within the LHS came when determining values for final

snow depth and energy consumption by running the new generated weather

data through the developed original model code. For each week, iteration,

the initial conditions of snow depth were updated from 0 mm snow depth to

whatever value is produced by the LHS. However, other parameters such as

temperatures within the layers of the field and within the snowpack itself

remained at constant values of 0℃ and −5℃, respectively, for each week.

Improvements to the LHS results overall could be made by directly

addressing these limitations. Using similar methods to the code which the

initial snow depth used to update for each week, once determined,

temperatures of the ground and snowpack could also be automatically

updated to represent initial conditions accurately. As the LHS output was the

data which the decision trees used to learn, the more accurate a

representation it was to real life weather data, the better the decision tree

could train and therefore the accuracy of the optimal inputs produced would

increase.

4.7 Optimal Control Guidance Document
This section includes the final guidance document which provides the non-

specialist human operator of the football pitch optimal control inputs. These

control inputs, Δ𝑇 and Liquid Flow Rate were selected through machine

learning methods to allow a final snow depth suitable for playing on, ≤ 1mm,

with minimal energy consumption.

This is a basic, ‘rule of thumb’ guidance which can be used by the operator to

get approximately optimal control values.

The operator should follow 3 basic steps:

1. Check the Weather Forecast

This can be from a number of sources, but it is recommended for the

region of Finland in which the football pitch is located to use the

Finnish Meteorological Institute website [73]. This website allows the

reader to access an upcoming forecast which includes daily values for

predicted Air Temperature (℃), Wind Speed (𝑚/𝑠), Precipitation

Amount (𝑚𝑚), Cloud Cover (1/8) and Snow Depth (𝑐𝑚).

 72

2. Follow Guidance Document and Identify Optimal Control

Parameters

Figure 68, Figure 69 and Figure 70 make up the 3 pages of the

guidance document which will be provided to the operator.

To follow this guidance firstly the operator will have to determine the

Air Temperature. If air temperature is greater than 0.3℃ then the

operator should follow page 1, Figure 68. If the air temperature is less

than or equal to than 0.3℃ then the operator should follow page 2,

Figure 69 which leads into page 3, Figure 70.

Regardless of what page the operator starts on the process for

determining optimal control input is the same. Starting on the yellow

rhombus as shown in Figure 66, follow the flow chart downwards.

Figure 66: Yellow Rhombus, Start Point

The decision on what path to take, either yes or no, green, or red,

depends on the answer to each subsequent decision rhombus based

on the weather data from 1.

Note: Page 2 leads into page 3 through 2 possible decision arrows.

The flow chart continues and should follow the same path as it moves

between pages.

All end nodes of the flow chart are pink rounded rectangles, Figure 67.

These nodes contain values and/or ranges of values for the control

inputs.

Figure 67: Pink Rounded Rectangle, End Point

3. Set ΔT and Liquid Flow Rate to Optimal Values

Based on the control values determined by 2, the operator should set

the physical controls to acceptable values within the ranges.

These 3 steps are all that are required from the operator to ensure that the

football pitch is returned to adequate playing conditions with a snow depth of

zero achieved through minimum energy consumption.

 73

The operator will still have the task of determining specific control values

within the ranges determined from the flowcharts below. This allows for some

room for human error to occur. The optimal control guidance document

focused in on near to optimal control input values but did not take into

consideration all weather conditions experienced at any time.

This guidance document was a foundational stage for the underground

heating system considered within this report. Prior to completing this stage of

the project, the control inputs were selected by a specialist operator on the

basis of previous experience, rather than following a pre-defined set of

conditions. Therefore, the underfloor heating system was not using the most

optimal control input parameters, which means it was not using the minimum

possible energy consumption whilst still allowing for adequate playing

conditions. The current method for determining Δ𝑇 and Liquid Flow Rate

values priorities snow melting on the pitch without considering the energy

consumption at all. Therefore, even although this wasn’t the most accurate

and most optimal guidance, it was still a significant improvement on the

current method, simplifying the process and no longer requiring a specialist

operator, and meaning that adjustments could be easily made if the weather

forecast changes throughout the day. The guidance document itself was

designed to be user-friendly, presenting branching information in an

organised way. Making sure that the information was easy to process for a

non-specialist operator, simply by reading upcoming weather forecasts, was

another key step in ensuring that the system would be operated correctly,

and subsequently in an energy-efficient manner.

The applications for optimal control guidance documents of this sort goes far

beyond controlling the underground heating of an amateur football pitch in a

small city in Southern Finland. With sports grounds across the northern

hemisphere and beyond, all experiencing periods of cold weather and frozen

pitches, resulting in cancelled or postponed games. Detrimental knock-on

effects to the mental and physical wellbeing of millions annually. With energy

prices increasing dramatically, individuals and businesses are looking to

reduce costs in all areas so are not likely to install or implement an

underground heating system without significant personal benefit. The optimal

control guidance document could be developed and adapted for different

conditions to provide the most optimal control parameters for underfloor

heating systems across the world which can determine the minimal energy

expenditure whilst still maintaining playable conditions. The money spent on

powering the underground heating system could be significantly less than the

loss in revenue if games are cancelled, particularly within professional sports

teams.

 74

Figure 68: Optimal Control Guidance Document Page 1

 75

Figure 69: Optimal Control Guidance Document Page 2

 76

Figure 70: Optimal Control Guidance Document Page 3

 77

After the data was organised for the creation of the guidance document, it

became apparent that some weather parameters had a much more important

role in the decision-making process of the regression model. As it was

expected, air temperature and precipitation amount appeared the most and

were found to have the largest ranges of values, as those were the key

parameters determining whether snowfall would occur. Therefore, those

values were taken as the leading choices in the guidance document. Every

branch begins by assessing the value of air temperature. Once the range of

temperature is identified, the next leaf in the branch can be followed.

Precipitation amount was the second most common variable, but other

parameters were also included, allowing conditions where no snowfall is

currently occurring, but snow cover is still present, to be captured. Based on

the 2 conditions, a suitable range was identified for the control inputs to meet

the conditions described above. This also served as an additional validation

process for the algorithm, proving the correct factors were chosen as part of

the prediction. Others, such as wind speed, were entirely omitted, supporting

the conclusion reached as part of Section 3.2.8 that the impact of wind on the

snow distribution could be neglected.

One of the features of the simple guidance document was that it provided

ranges of values, rather than a set point. This allowed for some flexibility,

where lower values could be used if the pitch did not have to be in use within

a certain timeframe. This allowed for the lowest energy solution. Higher

values in the range could be picked when there are time constraints, to

minimise the downtime. However, this could also become a limitation of the

model, as while more accurate than the current system, leaves room for

wrong interpretation. One of the most important factors when considering

energy consumption was not only determining the cases where the

conditions were favourable, but also situations where conditions were

adverse. These could be described as situations where regardless of the

values of ∆𝑇 and liquid flow rate, not enough snow will be melted to achieve

playing conditions. This could occur in cases of extreme snowfall for a

continuous period of time, or if the system has been out of use and a large

amount of snow cover has accumulated. Having the ability to identify such

cases based on the forecast could further improve the energy efficiency of

the system as it will simply not be used if it is not capable of maintaining the

necessary surface conditions. This was partially investigated as part of the

decision tree validation, and a snow depth of around 9 cm was established

as a near-critical value for the melting. While this was the case, it left a lot to

be desired in terms of the specific conditions which led to this result, due to

the prevalence of air temperature and precipitation amount in the decision

tree output. Further investigation will be required to establish the exact

relationship between those values and to validate the exact snow depth at

which the heating network would no longer be effective.

 78

4.8 True Optimal Control
As discussed in Section 4.7 above, the limitations of the simple guidance

model led to the development of the complicated machine learning algorithm,

which would predict the exact values of the required control inputs.

The metric of Mean Absolute Error (MAE) was calculated to determine the

accuracy of predictions made by the Decision Tree, for optimal control

parameters. The random state value of the train test split was changed for 4

different cases to validate the mean absolute error for different versions of

the trained decision tree.

Table 14: Mean Absolute Error Values for Optimal Control Decision Tree

Random State
ΔT Mean Absolute

Error (℃)

Liquid Flow Rate
Mean Absolute Error

(l/s)

0 6.703561611570248 0.3153286033057851

1 6.999704797520661 0.3384494380165289

2 6.751770942148760 0.3412534338842976

3 6.179161735537190 0.3355962561983471

Average Values: 6.66 0.33

Table 14 shows the MAE value for both ∆𝑇 and the Liquid Flow Rate for 4

random state values. The average Mean Absolute Error for ∆𝑇 was 6.66℃,

with an operational range of 0℃ to 20℃ giving an error of 33.3% and the

average Mean Absolute Error for Liquid Flow Rate is 0.33 𝑙/𝑠 with an

operational range of 0.01 𝑙/𝑠 to 1 𝑙/𝑠 giving an error of 33%. Both MAE

values were within an acceptable range and confirm the accuracy of the

complicated machine learning model.

The complicated machine learning model ran for 3000 iterations, Table 15

represents an example of the types of outputs produced for the first 10

iterations. It shows that for each iteration with specific and unique weather

parameters optimal control input variables, ∆𝑇 and the Liquid Flow Rate

values, had been determined.

 79

Table 15: True Optimal Control Values for 10 Iterations

Cloud
Amount

(1/8)

Precipitation
Amount

(mm)

Precipitation
Intensity
(mm/hr)

Snow
Depth
(mm)

Air
Temp
(°C)

Wind
Speed
(m/s)

Δ T
(°C)

Liquid
Flow Rate

(l/s)

2 0.2 0.1 9.7 6.6 6.4 19.8 0.8

2 1.5 0.4 23.8 0.7 4.0 13.8 0.8

1 2.3 4.6 4.9 6.8 4.8 9.9 0.5

7 1.8 1.9 25.0 4.8 2.4 8.6 0.3

5 0.2 0.7 9.4 7.9 8.6 2.0 1.0

3 2.6 3.8 1.8 5.8 1.1 2.0 0.7

0 0.3 2.6 4.3 -3.7 8.0 5.7 0.9

1 0.4 1.9 10.9 1.9 7.6 0.4 0.3

2 0.9 5.0 14.8 7.4 5.8 5.2 0.1

0 2.0 1.7 11.8 0.5 0.7 16.8 1.0

4 0.1 1.9 18.2 5.2 5.8 14.2 0.2

The above results show that through further refined training and testing, this

approach for determining control inputs, ∆𝑇 and the Liquid Flow Rate, shows

that it is possible to determine optimal control inputs for any combination of

weather scenarios.

Figure 71, Figure 72 and Figure 73 make up 3 pages of a summarised

complicated guidance document. This particular guidance document was

created using the 3000-iteration trained and tested data but had been

simplified significantly to 30 possible control inputs based on trends in the

weather data. The complicated guidance is a foundation for a full and

extensive guidance document which could be developed for a non-specialist

human operator in charge of the control of the underground heating system.

The complicated optimal control guidance document should be read and

implemented the same way as the general guidance document described in

4.7, with page 1 leading into page 2 and page 2 into page 3.

 80

Figure 71: Complicated Optimal Control Guidance Page 1

 81

Figure 72: Complicated Optimal Control Guidance Page 2

 82

Figure 73: Complicated Optimal Control Guidance Page 3

The complicated optimal control guidance document differed from the

generalised optimal control guidance document of 4.7 as it considered more

than 2 weather conditions for each control input suggested.

Another way that the complicated optimal control guidance document differed

from the generalised optimal control guidance was that it provided an exact

value for ∆𝑇 and the Liquid Flow Rate and not a range. It therefore presented

a more reliable and accurate method of training and testing weather

 83

conditions as it provided the exact value that the human operator should set

the input controls to over the course of a week, leaving less room for human

error compared to having to select values within the ranges provided.

The increased specificity of the solution also carried its own set of problems.

As the number of specific cases of control increased, the amount of data

required to produce those values also increased significantly. This risked

creating a set of instructions which was too narrow and complicated to be

used by a non-specialist operator. A balance was required in selecting the

depth to which the guidance should be developed, to still allow for weather

parameters to be grouped for simplification.

In addition, the training set used during the creation of this model only

considered cases where the snow would be sufficiently melted with a lower-

than-average energy expenditure. This excluded a subset of conditions

where the snow would not be fully melted or the energy expenditure would be

too high, which could result in a small sample of extreme cases where the

algorithm would recommend controls which would not work. Including this

data would have required manually identifying those cases in the training

data and assigning them zero values for both control inputs. This was once

again beyond the scope of the project, which only requested a simple

guidance, and time constraints did not allow this to be fully explored, however

it provides an interesting avenue for future research on the topic. This also

strongly relies on first developing the knowledge of which weather conditions

would lead to insufficient melting, previously mentioned in Section 4.7.

A final and most optimal guidance would be trained and tested with a larger

number of iterations than 3000 and would present optimal control values, ΔT

and the Liquid Flow Rate, for all 6 combination of weather conditions

included within the training. Weather conditions included currently are Cloud

Amount (1/8), Precipitation Amount (mm), Precipitation Intensity (mm/h),

Snow Depth (cm), Air Temperature (℃) and Wind Speed (m/s). The

difficulties with creating a guidance document of this scale are the large

range of possible combinations of conditions which can occur to replicate real

life weather scenarios, this would require a larger time frame of concentrated

focus to develop written guidance in some format which could easily be

understood. This task goes far beyond the scope of this project currently but

is something that the COMEA research group hope to progress with in the

future.

Although different in nature, both control approaches were valid ways to

tackle the issue of determining the optimal control inputs for different weather

scenarios. The simple guidance could be utilised with an extensive dataset in

the creation of a general set of ranges for conditions and control. Once those

have been determined, the complicated machine learning algorithm could be

used for determining the precise inputs within this range required to maintain

playing conditions. This would both make the process of creating a new

guidance document for a new set of conditions or location easier, by

simplifying some of the very specific solutions into more general categories,

but also allow less room for wrong interpretation as those ranges can be

 84

broken down into more refined categories, leading to more efficient

maintenance and larger energy savings.

4.9 Cost Analysis
To validate outputs produced from the true optimal control decision tree, a

cost analysis was carried out to compare how the dynamically adapted

values recommended by the algorithm compared to the original ‘fixed’

operation method.

Notably, as optimal control was calculated using a Machine Learning

algorithm and the system only requires human input to increase operational

efficiency, no material or implementation costs were involved. This meant

that to determine the savings that the optimal control algorithm could provide,

money saved during operation for a 3-month period could be directly

compared between optimal and standard control.

Firstly, the 3-month period between January – March 2023 was chosen for

the weather data, to be kept constant between the cases. One case

maintained standard control parameters of constant 0.4 𝑙/𝑠 Liquid Mass Flow

Rate (chosen as the lowest flow rate that could melt enough snow to

maintain the field in playing conditions), and an Inlet/Outlet Temperature

Difference following existing time delay control conditions, as described in

Section 4.2. The second case took the same weather data and used the

algorithm developed as part of Section 4.8 to predict the exact values of the

control inputs which should be implemented. The new control inputs were

then introduced to the original calculation.

After running both examples, savings of around 80GJ or 22,225 kWh were

observed for the second case, confirming that the optimal control algorithm

allows for significant energy savings. Assuming that the heating system was

powered by the grid as opposed to power station excess heat, and using an

average market price for district heating from January to March of €100/MWh

[74], the money saved in this situation was around €2222.50 over 3 months.

The original COMEA paper [1] shared an example of a similar undersoil

heating system in Sweden, estimating that the total cost of heating the

system for 1 year was around €85,000. Assuming that a football pitch in

Finland would cost the same, and that €2222.50 is saved every 3 months,

use of true optimal control predictions allows for a saving of €8890 annually.

4.10 Recommendations For Future Work
This project reviewed and advanced the work published in [1]. The following

section proposes recommendations for future research advancements based

on the work undertaken within this report.

Firstly, Section 3.2.8 briefly described the negation of snow distribution due

to the effects of wind speed. This assumption was based on previous studies

which concluded that wind speeds up to 7 𝑚/𝑠 had little effect on the snow

cover, which far exceeded the values measured in the case of the football

pitch considered as part of this project. These results were determined for

building rooftops, which are usually free of obstruction or surrounding

 85

interference. Future work could confirm these negations through the creation

of a large-scale model to simulate the field and surrounding areas, which

would include interference by nearby buildings and trees.

As discussed in Section 3.2.7, the snowpack was classified into 4 categories

for the purposes of the calculation, but in reality, a snowpack can consist of

any number of different snow types within one snowpack at any one time.

Therefore, future research could investigate the implementation of multi-

phase snowpacks within the heat and mass balance computational model,

further refining the existing model to capture the true conditions more

accurately.

Moisture Transport was a section that could continue to be studied in future

work. Firstly, the moisture simulation itself could be expanded. An example of

this could be simulating the transport of mass in the form of particles in the

soil or comparing results between different turbulence models in place of

laminar flow. When applying the techniques used in the study to another

project, Ansys could be used again to model the physical processes

occurring in and around the system.

While the Python model of the pipe network provided good estimations of the

time delay, further improvements could be made to the model by performing

a large scale, more complicated simulation in software such as Ansys Fluent.

The script and results of the study conducted as part of this project could be

used to determine the necessary input parameters for the complex

simulation. This could then be used to create a visual representation of the

circulation of the fluid in the network. While this is highly computationally

intensive and not possible to run locally, it could allow for the properties of

the soil surrounding the pipes and other parameters to be incorporated. This

would provide the most accurate representation of the heat transfer

mechanisms occurring within the pipes.

Physical modifications to the existing system were not possible at the time of

writing, therefore the work carried out on this project focused on the

development of the computational model for optimal control. In the future,

further improvements could be achieved through the use of new technologies

such as inserts in the pipes to improve heat transfer capabilities [75].

Furthermore, the scope of this project did not require for a full and extensive

operator guidance document to be produced beyond the ‘rule of thumb’

guidance from the simplified decision tree. However, the results generated

from the complicated machine learning approach described in Section 3.4.3

and the shortened 30 node complicated optimal control guidance could be

used as a foundation for determining optimal control values for a much wider

range of weather conditions. Trends could be identified for very specific

cases, grouped in the form of a guidance document which could be

understood by non-specialist human operators. This process could be

accelerated through the use of other machine learning models. For example,

an unsupervised learning model could understand the large decision tree

output and group the corresponding branches for optimal control. Remaining

in the area of supervised learning, ensemble methods could be applied to

 86

increase prediction accuracy, such as a Random Forest algorithm, or a

combination of Machine Learning algorithms and Deep Learning. Also,

increasing the number of data samples in the dataset often vastly improves

the prediction power of a Machine Learning algorithm. In future we could

further extend the number of generated weather conditions to achieve this

increase in accuracy.

In the Design of Experiments, the values for the snow depth and energy

consumption at the end of the simulation were acquired by fixing the weather

parameters for the full duration. Using more complicated methods, such as

incorporation of non-constant weather could further improve the accuracy of

the machine learning model as this would reflect real world conditions more

accurately, improving the quality of the training data used.

Finally, this model was designed for the very specific purpose of being

implemented for the football field in Naantali. As discussed in Section 4.9, the

optimisation recommended as part of this project could contribute to savings

of up to €2222.50 over the 3-month period simulated. This could have

significant implications in the wider sports industry, where a small model,

modified to account for the geometry of the specific location could be used to

optimise energy usage in the heating network.

Many other applications also exist beyond sports, in the maintenance of

public infrastructure and roads. High traffic areas such as city centres could

benefit greatly from the technology, reducing emissions from snow-clearing

vehicles and the associated pollution from the use of salt and sand for de-

icing, the costs of which are discussed in Section 2.1. Wider adoption could

also contribute to reducing delays in public transport and minimising the

impact of snow and ice accumulation in public spaces.

 87

5.0 Conclusions
In conclusion, the use of computational modelling in the prediction of snow

accumulation and subsequent operation of an underground heating system

could help greatly reduce energy expenditure while also avoiding the high

cost of refitting the existing infrastructure. This project aimed at improving a

model developed for a sports field located in Finland, however it has wide

ranging applications beyond current uses, including in the maintenance of

public spaces and transport hubs.

The first main outcome was an improved computational model for prediction

of snow accumulation. This was achieved through the implementation of

additional features into the existing code developed by the COMEA Research

Group at Turku University of Applied Sciences. This took into consideration

the moisture transport of meltwater, time-delay in the distribution network and

evaporation and condensation.

The final conclusion of the Moisture Transport simulation subtask was that

the movement of liquid water beneath the football pitch did not affect the

thermal properties of the soil in a significant way. In the 4th iteration of

moisture simulation, the quantity of water entering the inner soil through

horizontal motion was never more than 3% of the simulated cross-sectional

area. With a precipitation amount that rarely goes far beyond 1 𝑚𝑚/ℎ in

reality, the quantity of water entering a real system would be even lower.

While the impact of moisture could be considered negligible in this case, if

the heating system were to be used in other situations in the future, for

example where the pitch layer cannot be considered impermeable, the

moisture transport may have more of an effect. For this reason, the moisture

transport subtask was effective in functioning as both a research task, and an

adaptable technique that could be used in future work.

Studying the time delay and the subsequent imbalance created in the melting

of snow on the pitch surface showed that depending on the ambient

conditions, there could be a difference of around 7 hours on average

between the network being initiated and all sections of the system reaching

the required temperature. This would significantly increase as the initial

temperature decreased, therefore activating the system at an appropriate

time could prove key to tackling this issue. Furthermore, the liquid flow rate

and temperature of the solution proved to have a similar effect, meaning

those parameters had to be chosen carefully to avoid creating significant

differences in the melting.

Following a detailed comparison of features from the 2007 paper [2], which

introduced a computational heat and mass transfer model for an underfloor

heating system on a pavement against the original model, incorporation of

these features came in the form of the inclusion of evaporation and

condensation in the overall heat transfer model. The effect 𝑄̇𝐸𝑣𝑎𝑝/𝐶𝑜𝑛𝑑 had

on the overall model was minimal and made only a slight improvement to the

accuracy of Snow Depth prediction. It was however kept within the improved

computational model for future usage which will use weather data for

different time periods or different observation locations.

 88

The results were then compared to the Original Code for 2 sets of test data –

one for the January-March 2021 period and the same period in 2023. This

analysis was carried out to validate the implementation of additional code,

showing that the computational model showed improved results and behaved

as expected for multiple sets of data.

Moreover, sensitivity analysis was performed on the model with regards to

both the variables utilised in the calculations and the numerical scheme

implemented. For the former, 11 parameters were chosen for the study, on

the basis of exploring the importance of parameters which were more

obscure and therefore very difficult to measure in the real-world, for example

radiation such as turf and snow surface emissivities. Each variable was

assigned 5 values within a range and the results were plotted using hex-

graphs and ranked in order of importance. Snow Thermal Conductivity was

found to have the greatest impact on the calculation, while Air Density was

the least significant. 2 additional numerical schemes were tested in place of

the existing ‘explicit’ scheme: implicit and predictor-corrector. Several

functions within the script were modified to adopt the new solver methods,

Backward Euler and Modified Euler respectively, however in both cases they

were found to be less accurate than the existing implementation. Therefore,

the explicit scheme was deemed the most accurate as the predictions it

produced most closely resembled the real-world measurements.

In addition, the impact of wind speed was investigated as another possible

inclusion in the computational model. The behaviour of the snowpack has

important implications in the accuracy of the calculations, and therefore a

greater understanding of the effect of snow drifting caused by high wind

speeds was essential. Similar studies conducted for rooftops in buildings

discovered that wind speeds as high as 7 𝑚/𝑠 had minimal impact on the

distribution of the snowpack. This was taken as the minimum boundary, and

weather data from a weather station located around 10 𝑘𝑚 from the football

pitch spanning several months was analysed. The 2 main findings were that

the wind speed at that location remained significantly below the threshold for

the period analysed and that measurements were carried out at altitude,

where little interference is present. The additional considerations of the

presence of buildings in the area surrounding the field and differences in

elevation meant that the wind speed would be even lower than the measured

values. It was therefore concluded that the effects of wind speed could be

negated throughout the report.

The improved computational model was then utilised in a Design of

Experiments, where Latin Hypercube Sampling was used to produce a large

set of random samples of weather data and control inputs. The new data was

introduced into the original calculation and simulated for the duration of a

week, generating results for the snow melting and energy consumption in

various scenarios. These results could then be analysed and ranked

according to the principle of minimising both snow cover and energy usage.

To simplify the training process, thresholds were identified for which the field

could be considered in playing conditions. For snow depth, this was selected

as 0.1 𝑐𝑚, while the energy consumption had to be below the average value

 89

for a set of 3000 simulations. When a simulation result met these conditions,

it was assigned a value of 1, otherwise it was allocated a 0. The true/false

designation was useful in presenting the algorithm with a clear target variable

to aim for.

The outcome of the Design of Experiments was used as the basis for the

creation of a small machine learning model. The ranked scenarios were

implemented, with a large segment making up the training data, and a

regression model was fitted to predict whether the criteria would be met for

the remainder, or test data. The decision-making process was further

investigated and validated using a set of parameters the model was

unfamiliar with. The validation process found that the model could predict the

outcome correctly with over 80% accuracy, before being used in the

subsequent creation of a guidance document for the control of the system by

a non-specialist operator. This included the necessary control inputs given a

certain set of weather parameters, ensuring that the field remained with

minimal snow cover while also reducing the energy consumption.

This guidance was simplified and could be considered ‘Rules-of-Thumb’, and

so it included broad ranges of values for both the weather and control inputs

and was mostly based on Air Temperature. Therefore, a complicated

machine learning model was also developed, which only took into account

conditions where enough snowmelt had occurred and energy consumption

was below the average value, meaning only scenarios which would receive a

‘True’ designator were included. This model was used to predict the exact

values of the ∆𝑇 and Liquid Flow Rate which would be required to achieve

those conditions, resulting in a much more complicated decision tree. Due to

the time constraints of the project, it was not possible to process this amount

of data in its entirety for this project, however future work could tackle the

process of developing more efficient ways of doing this, perhaps through the

use of other machine learning models. In the scope of the project, the

decision tree was limited to allow for some processing. This resulted in an

additional set of guidelines which could be used in much more specific cases,

rather than the simple rulebook created initially.

To validate the decision-making process of the algorithm, the control output

values were tested in the original simulation. The energy consumption could

then be compared directly to the values achieved if only constant controls

were applied. It was determined that using the optimal controls

recommended could save 80 GJ in the 3-month test case, which was

estimated to be around €2222.50, or the equivalent of €8890 annually. A

value of €8890 is a rough estimation, as weather conditions will result in

much less snow during summer months, which would reduce how much the

system is used. This savings estimation was proven in just one test case,

and further use and testing under different conditions could lead to even

larger savings. This also proves the viability of such systems in applications

outside of the one considered in this project, such as in the maintenance of

public spaces, pavements and roads. Looking beyond the financial savings,

this would provide significant reductions in the downtime of such

infrastructure as periods of heavy snowfall could be anticipated and the

 90

system could be adapted for those conditions. This would also reduce the

need for de-icing and gritting, which is more time consuming and less

effective.

This report detailed the development of a refined computational model for the

optimal control of an underground heating system. The success of this

project can be assessed through the ability to achieve the aims and

objectives previously defined in Section 1.2.

Firstly, a clear understanding of the prior work undertaken by the COMEA

research team was achieved by allowing dedicated time and focus to allow

familiarisation of the original heat and mass transfer. The first 2 weeks of the

project became this dedicated time, where we developed our understanding

of the initial work in tandem with a first draft of the literature review. This

allowed for all relevant physics and thermodynamics to be accurately

represented within the improved upon computational model.

Secondly, the refinement of the dynamical snow melting model, the heat-

mass transfer interactions between different layers of soil, and the

interactions between the snow surface and the outside atmospheric

conditions were achieved through multiple additional considerations, such as

the moisture transport within the soil. Additionally, accounting for the

imbalance of the snow melt rate across the length of the pitch due to the

water-propyleneglycol solution circulating through the ductwork and creating

a temperature time delay further refined the model.

Furthermore, the objective to include a detailed comparison of the original

model to the heated pavement paper’s model was met through the

comparison and incorporation of features such as the consideration of the

effects of evaporation and condensation on the snowpack.

Improvements to the model accuracy were also accomplished by performing

a sensitivity analysis on the model, through the inclusion of 3 distinct

approaches. Firstly, through a parameter study, then a study on the impact of

time-step size and finally by considering different numerical schemes.

The objective for simulating accurate weather conditions and therefore

operational parameters for a specific time was achieved through LHS

methods.

Finally, machine learning methods were used to meet the final 2 defined

objectives to establish frameworks for the optimal control of the system in

different weather conditions and for establishing a computational

methodology for optimal operation of the heating system for a linearised

weather forecast 1 week in advance. Regression decision trees allowed for

simplified or “Rule of Thumb” guidance document on the control of the

system as it will be controlled by non-specialist human operators to be

written.

All objectives outlined within this report have been fully discussed and the

work undertaken to achieve these within this project have been described in

detail throughout.

 91

To conclude, this report outlined the work and findings of the Aero-

Mechanical Engineering 5th Year Masters Group Project titled “Model-Based

Optimal Control of An Underground Heating System”, which improved upon

the modelling work introduced in the 2023 Computational Engineering and

Analysis paper, “A computational model for underground heating control of

outdoor sports fields in winter conditions”, [1].

 92

6.0 References
[1] E. P. Immonen, Tommi; Ardaneh, Fatemeh; Chaudhari, Ashvinkumar,

"A Computational Model For Underground Heating Control of Outdoor
Sports Fields in Winter Conditions," 2023.

[2] X. Liu, S. J. Rees, and J. D. Spitler, "Modeling snow melting on heated
pavement surfaces. Part I: Model development," Applied Thermal
Engineering, vol. 27, no. 5, pp. 1115-1124, 2007/04/01/ 2007, doi:
https://doi.org/10.1016/j.applthermaleng.2006.06.017.

[3] "The History Of Undersoil Heating." Football Stadiums.
https://www.football-stadiums.co.uk/articles/undersoil-heating-in-
football/ (accessed 11/09/23, 2023).

[4] W. Morris. "Football pitch works and Premier League promotion: Key
considerations." Walker Morris. https://www.walkermorris.co.uk/in-
brief/football-pitch-works-and-premier-league-promotion/ (accessed
11/09/23, 2023).

[5] S. N. Cevik, Keitaro "Chasing the Sun and Catching the Wind: Energy
Transition and Electricity Prices in Europe." [Online]. Available:
file:///C:/Users/erinb/Downloads/wpiea2022220-print-pdf.pdf

[6] J. Good, V. Ugursal, and A. Fung, "Simulation strategy and sensitivity
analysis of an in-floor radiant heating model," IBPSA 2005 -
International Building Performance Simulation Association 2005, 01/01
2005.

[7] A. Ahmed, F. Conti, M. Schießl-Widera, and M. Goldbrunner, "CFD-
Based Sensitivity-Analysis and Performance Investigation of a
Hydronic Road-Heating System," Energies, vol. 16, no. 5, doi:
10.3390/en16052173.

[8] D. F. Vitaliano, "An Economic Assessment of the Social Costs of
Highway Salting and the Efficiency of Substituting a New Deicing
Material," Journal of Policy Analysis and Management, vol. 11, no. 3,
pp. 397-418, 1992, doi: 10.2307/3325069.

[9] G. Zhou, M. Cui, J. Wan, and S. Zhang, "A Review on Snowmelt
Models: Progress and Prospect," Sustainability, vol. 13, no. 20, doi:
10.3390/su132011485.

[10] M. Zukowski, "A NUMERICAL ANALYSIS OF HEAT AND MASS
TRANSFER IN A ROOM WITH THE AIR-UNDERFLOOR HEATING,"
08/11 2003.

[11] J. You, D. G. Tarboton, and C. H. Luce, "Modeling the snow surface
temperature with a one-layer energy balance snowmelt model,"
Hydrol. Earth Syst. Sci., vol. 18, no. 12, pp. 5061-5076, 2014, doi:
10.5194/hess-18-5061-2014.

[12] B. Adl-Zarrabi, R. Mirzanamadi, and J. Johnsson, "Hydronic Pavement
Heating for Sustainable Ice-free Roads," Transportation Research
Procedia, vol. 14, pp. 704-713, 2016/01/01/ 2016, doi:
https://doi.org/10.1016/j.trpro.2016.05.336.

[13] S. J. Rees, J. D. Spitler, and X. Xia, "Transient analysis of snow-
melting system performance," (in English), ASHRAE Transactions,
vol. 108, p. 406, 2002

2023-07-26 2002. [Online]. Available: https://www.proquest.com/scholarly-
journals/transient-analysis-snow-melting-
system/docview/192534330/se-2?accountid=14116

https://doi.org/10.1016/j.applthermaleng.2006.06.017
https://www.football-stadiums.co.uk/articles/undersoil-heating-in-football/
https://www.football-stadiums.co.uk/articles/undersoil-heating-in-football/
https://www.walkermorris.co.uk/in-brief/football-pitch-works-and-premier-league-promotion/
https://www.walkermorris.co.uk/in-brief/football-pitch-works-and-premier-league-promotion/
https://doi.org/10.1016/j.trpro.2016.05.336
https://www.proquest.com/scholarly-journals/transient-analysis-snow-melting-system/docview/192534330/se-2?accountid=14116
https://www.proquest.com/scholarly-journals/transient-analysis-snow-melting-system/docview/192534330/se-2?accountid=14116
https://www.proquest.com/scholarly-journals/transient-analysis-snow-melting-system/docview/192534330/se-2?accountid=14116

 93

https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle
=Transient+analysis+of+snow-
melting+system+performance&author=Rees%2C+Simon+J%3BSpitler
%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406
&date=2002-01-
01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-
2505&isbn=&sid=ProQ%3Asciencejournals_.

[14] A. Malakooti et al., "Design and Full-scale Implementation of the
Largest Operational Electrically Conductive Concrete Heated
Pavement System," Construction and Building Materials, vol. 255, p.
119229, 2020/09/20/ 2020, doi:
https://doi.org/10.1016/j.conbuildmat.2020.119229.

[15] J. Wurm, S. Bachler, and F. Woittennek, "On delay partial differential
and delay differential thermal models for variable pipe flow,"
International Journal of Heat and Mass Transfer, vol. 152, p. 119403,
2020/05/01/ 2020, doi:
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119403.

[16] L. Pagliarini, L. Cattani, M. Mameli, S. Filippeschi, and F. Bozzoli,
"Heat transfer delay method for the fluid velocity evaluation in a multi-
turn pulsating heat pipe," International Journal of Thermofluids, vol.
17, p. 100278, 2023/02/01/ 2023, doi:
https://doi.org/10.1016/j.ijft.2022.100278.

[17] H. Liu, P. Maghoul, and H. M. Holländer, "Sensitivity analysis and
optimum design of a hydronic snow melting system during snowfall,"
Physics and Chemistry of the Earth, Parts A/B/C, vol. 113, pp. 31-42,
2019/10/01/ 2019, doi: https://doi.org/10.1016/j.pce.2019.01.009.

[18] H. Fatahian, H. Taherian, H. Salarian, and E. Fatahian, "Thermal
performance of a ground heat exchanger in a cold climate: a CFD
study," The European Physical Journal Plus, vol. 136, no. 3, p. 265,
2021/03/01 2021, doi: 10.1140/epjp/s13360-021-01265-7.

[19] G. Dı́az, M. Sen, and K. T. Yang, "Effect of delay in thermal systems
with long ducts," International Journal of Thermal Sciences, vol. 43,
no. 3, pp. 249-254, 2004/03/01/ 2004, doi:
https://doi.org/10.1016/j.ijthermalsci.2003.07.004.

[20] J. Duquette, A. Rowe, and P. Wild, "Thermal performance of a steady
state physical pipe model for simulating district heating grids with
variable flow," Applied Energy, vol. 178, pp. 383-393, 2016/09/15/
2016, doi: https://doi.org/10.1016/j.apenergy.2016.06.092.

[21] H. Janssen, J. Carmeliet, and H. Hens, "The influence of soil moisture
transfer on building heat loss via the ground," Building and
Environment, vol. 39, no. 7, pp. 825-836, 2004/07/01/ 2004, doi:
https://doi.org/10.1016/j.buildenv.2004.01.004.

[22] A. S. Association, A guide to the use of iron blast furnace slag in
cement and concrete: Australasian Slag Association, 1990, p. 37.
[Online]. Available: https://www.asa-
inc.org.au/uploads/default/files/asa_guide_to_the_use_of_iron_blast_f
urnace_slag_in_cement_and_concrete.pdf. Accessed on: 18th of
September 2023.

[23] O. K. B.C., "Geo-engineering properties of granulated blast furnace
slag," in International Conference on Geotechnical Engineering, Tunis,
Tunisia, 2008, no. 24th–26th March, pp. pp249 - 257. [Online].
Available:

https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://suprimo.lib.strath.ac.uk/openurl/SU/SUVU01?genre=proceeding&atitle=Transient+analysis+of+snow-melting+system+performance&author=Rees%2C+Simon+J%3BSpitler%2C+Jeffrey+D%3BXia%2C+Xiao&volume=108&issue=&spage=406&date=2002-01-01&rft.btitle=&rft.jtitle=ASHRAE+Transactions&issn=0001-2505&isbn=&sid=ProQ%3Asciencejournals_
https://doi.org/10.1016/j.conbuildmat.2020.119229
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119403
https://doi.org/10.1016/j.ijft.2022.100278
https://doi.org/10.1016/j.pce.2019.01.009
https://doi.org/10.1016/j.ijthermalsci.2003.07.004
https://doi.org/10.1016/j.apenergy.2016.06.092
https://doi.org/10.1016/j.buildenv.2004.01.004
https://www.asa-inc.org.au/uploads/default/files/asa_guide_to_the_use_of_iron_blast_furnace_slag_in_cement_and_concrete.pdf
https://www.asa-inc.org.au/uploads/default/files/asa_guide_to_the_use_of_iron_blast_furnace_slag_in_cement_and_concrete.pdf
https://www.asa-inc.org.au/uploads/default/files/asa_guide_to_the_use_of_iron_blast_furnace_slag_in_cement_and_concrete.pdf

 94

http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-
engineering%20properties%20of%20granulated%20blast%20furnace
%20slag.pdf?sequence=1&isAllowed=y. [Online]. Available:
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-
engineering%20properties%20of%20granulated%20blast%20furnace
%20slag.pdf?sequence=1&isAllowed=y

[24] X. G. Liang Xue, Hao Chen, "Fluid Flow in Porous Media," 2020, ch. 2.
[25] H. J. Steeman, M. Van Belleghem, A. Janssens, and M. De Paepe,

"Coupled simulation of heat and moisture transport in air and porous
materials for the assessment of moisture related damage," Building
and Environment, vol. 44, no. 10, pp. 2176-2184, 2009/10/01/ 2009,
doi: https://doi.org/10.1016/j.buildenv.2009.03.016.

[26] M. Van Belleghem, H.-J. Steeman, M. Steeman, A. Janssens, and M.
De Paepe, "Sensitivity analysis of CFD coupled non-isothermal heat
and moisture modelling," Building and Environment, vol. 45, no. 11,
pp. 2485-2496, 2010/11/01/ 2010, doi:
https://doi.org/10.1016/j.buildenv.2010.05.011.

[27] A. Atangana, "Chapter 2 - Principle of Groundwater Flow," in
Fractional Operators with Constant and Variable Order with
Application to Geo-Hydrology, A. Atangana Ed.: Academic Press,
2018, pp. 15-47.

[28] M. McKay and W. Conover, "RJ Beckman A comparison of three
methods for selecting values of input variables in the analysis of
output from a computer code," Technometrics, vol. 21, pp. 239-245,
1979.

[29] Y. Hung, "Optimal Experiment Design, Latin Hypercube," in
Encyclopedia of Systems Biology, W. Dubitzky, O. Wolkenhauer, K.-H.
Cho, and H. Yokota Eds. New York, NY: Springer New York, 2013, pp.
1583-1585.

[30] A. Fuller, Z. Fan, C. Day, and C. Barlow, "Digital Twin: Enabling
Technologies, Challenges and Open Research," IEEE Access, vol. 8,
pp. 108952-108971, 2020, doi: 10.1109/ACCESS.2020.2998358.

[31] M. Batty, "Digital twins," Environment and Planning B: Urban Analytics
and City Science, vol. 45, no. 5, pp. 817-820, 2018/09/01 2018, doi:
10.1177/2399808318796416.

[32] N. Crespi, A. T. Drobot, and R. Minerva, "The Digital Twin: What and
Why?," in The Digital Twin, N. Crespi, A. T. Drobot, and R. Minerva
Eds. Cham: Springer International Publishing, 2023, pp. 3-20.

[33] M. Company. "What is digital-twin technology?" McKinsey &
Company. https://www.mckinsey.com/featured-insights/mckinsey-
explainers/what-is-digital-twin-technology (accessed December,
2023).

[34] Claudia Muñiz, Wenfeng Hu, and Y. N. Molina. "Digital twins: what are
they and how are they enabling future networks?" Ericsson.
https://www.ericsson.com/en/blog/2022/3/what-are-digital-twins-three-
real-world-examples (accessed December, 2023).

[35] C. H. dos Santos and J. A. B. Montevechi, "Digital Twins Architecture,"
in Digital Twins: Basics and Applications, Z. Lv and E. Fersman Eds.
Cham: Springer International Publishing, 2022, pp. 1-12.

[36] C. Ntakolia, A. Anagnostis, S. Moustakidis, and N. Karcanias,
"Machine learning applied on the district heating and cooling sector: a

http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
http://www.tara.tcd.ie/bitstream/handle/2262/67138/2008_Geo-engineering%20properties%20of%20granulated%20blast%20furnace%20slag.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/j.buildenv.2009.03.016
https://doi.org/10.1016/j.buildenv.2010.05.011
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-twin-technology
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-twin-technology
https://www.ericsson.com/en/blog/2022/3/what-are-digital-twins-three-real-world-examples
https://www.ericsson.com/en/blog/2022/3/what-are-digital-twins-three-real-world-examples

 95

review," Energy Systems, vol. 13, no. 1, pp. 1-30, 2022/02/01 2022,
doi: 10.1007/s12667-020-00405-9.

[37] "sklearn.model_selection.train_test_split¶." https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.train_test
_split.html (accessed 14/12/2023, 2023).

[38] s.-l. developers. "1.1. Linear Models." scikit-learn. https://scikit-
learn.org/stable/modules/linear_model.html (accessed 11th of
September, 2023).

[39] Y. Aldossary, S. Alhaddad, M. Ebrahim, and A. M. Zeki, "Comparing
K-Nearest Neighbors, Random Forest and Naïve Bayes Models to
Classify Fetal Health Using Resampling Methods," in 2022
International Conference on Data Analytics for Business and Industry
(ICDABI), 25-26 Oct. 2022 2022, pp. 250-254, doi:
10.1109/ICDABI56818.2022.10041489.

[40] s.-l. developers. "1.4. Support Vector Machines." scikit-learn.
https://scikit-learn.org/stable/modules/svm.html (accessed 11th of
September, 2023).

[41] Viswa. "Support Vector Regression: Unleashing the Power of Non-
Linear Predictive Modeling." Medium.
https://medium.com/@vk.viswa/support-vector-regression-unleashing-
the-power-of-non-linear-predictive-modeling-d4495836884 (accessed
2023).

[42] s.-l. developers. "1.11. Ensemble methods." scikit-learn. https://scikit-
learn.org/stable/modules/ensemble.html (accessed 11th of
September, 2023).

[43] T. G. Dietterich, "Ensemble Methods in Machine Learning," in Multiple
Classifier Systems, Berlin, Heidelberg, 2000// 2000: Springer Berlin
Heidelberg, pp. 1-15.

[44] AnkanDas22. "Python | Decision Tree Regression using sklearn."
GeeksForGeeks. https://www.geeksforgeeks.org/python-decision-tree-
regression-using-sklearn/ (accessed 13, 2023).

[45] A. Cook. "Scaling and Normalization."
https://www.kaggle.com/code/alexisbcook/scaling-and-normalization
(accessed 14/12/2023, 2023).

[46] L. A. Jimenez-Roa, T. Heskes, and M. Stoelinga, "Fault Trees,
Decision Trees, And Binary Decision Diagrams: A Systematic
Comparison," arXiv preprint arXiv:2310.04448, 2023.

[47] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, "An
introduction to decision tree modeling," Journal of Chemometrics, vol.
18, no. 6, pp. 275-285, 2004/06/01 2004, doi:
https://doi.org/10.1002/cem.873.

[48] D. Varghese. "Comparative Study on Classic Machine learning
Algorithms." https://towardsdatascience.com/comparative-study-on-
classic-machine-learning-algorithms-24f9ff6ab222 (accessed
14/12/2023, 2023).

[49] "sklearn.tree.DecisionTreeRegressor." https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegress
or.html (accessed 14/12/2023, 2023).

[50] P. E. Bryan P. Strohman. "Drainage of Artificial Turf Systems."
https://cdn.ymaws.com/sportsbuilders.org/resource/resmgr/tm_present
ations/2019/5c_%E2%80%93_drainage_of_artificial_.pdf (accessed
18th of September, 2023).

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/svm.html
https://medium.com/@vk.viswa/support-vector-regression-unleashing-the-power-of-non-linear-predictive-modeling-d4495836884
https://medium.com/@vk.viswa/support-vector-regression-unleashing-the-power-of-non-linear-predictive-modeling-d4495836884
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/
https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/
https://www.kaggle.com/code/alexisbcook/scaling-and-normalization
https://doi.org/10.1002/cem.873
https://towardsdatascience.com/comparative-study-on-classic-machine-learning-algorithms-24f9ff6ab222
https://towardsdatascience.com/comparative-study-on-classic-machine-learning-algorithms-24f9ff6ab222
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://cdn.ymaws.com/sportsbuilders.org/resource/resmgr/tm_presentations/2019/5c_%E2%80%93_drainage_of_artificial_.pdf
https://cdn.ymaws.com/sportsbuilders.org/resource/resmgr/tm_presentations/2019/5c_%E2%80%93_drainage_of_artificial_.pdf

 96

[51] C. H. Bruand A, G. Lesturgez, "Physical properties of tropical sandy
soils: A large range of behaviours," presented at the Management of
Tropical Sandy Soils for Sustainable Agriculture, Khon Kaen,
Thailand, 2005. [Online]. Available:
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-
03/010066548.pdf.

[52] D. M. Gray, B. Toth, L. Zhao, J. W. Pomeroy, and R. J. Granger,
"Estimating areal snowmelt infiltration into frozen soils," Hydrological
Processes, vol. 15, no. 16, pp. 3095-3111, 2001/11/01 2001, doi:
https://doi.org/10.1002/hyp.320.

[53] MathWorks. "Simulating Systems with Variable Transport Delay
Phenomena." MathWorks.
https://uk.mathworks.com/help/simulink/slref/simulating-systems-with-
variable-transport-delay-phenomena.html#d126e746625 (accessed
September, 2023).

[54] V. Bansal, R. Misra, G. D. Agrawal, and J. Mathur, "Performance
analysis of earth–pipe–air heat exchanger for winter heating," Energy
and Buildings, vol. 41, no. 11, pp. 1151-1154, 2009/11/01/ 2009, doi:
https://doi.org/10.1016/j.enbuild.2009.05.010.

[55] J. B. Kitto, S. C. Stultz, Babcock, and C. Wilcox, Steam, its generation
and use, 41st . ed. (Steam 41). Barberton, Ohio: Barberton, Ohio :
Babcock & Wilcox, 2005.

[56] "180° Elbow Long and Short Radius." Wellgrow Industries Corp.
https://www.pipefittingweb.com/images/product/04_but-tweld-
fittings/pdf/180-elbow-long-radius.pdf (accessed 2023).

[57] "180 Degree Bend Diagram." Tulsa Tube Bending Company.
https://ttb.com/recent-news/diagrams/ (accessed 2023).

[58] "Heat Transfer Coefficients in Heat Exchanger Surface Combinations."
The Engineering Toolbox.
https://www.engineeringtoolbox.com/overall-heat-transfer-coefficients-
d_284.html (accessed 2023).

[59] L. Kang, X. Zhou, T. van Hooff, B. Blocken, and M. Gu, "CFD
simulation of snow transport over flat, uniformly rough, open terrain:
Impact of physical and computational parameters," Journal of Wind
Engineering and Industrial Aerodynamics, vol. 177, pp. 213-226,
2018/06/01/ 2018, doi: https://doi.org/10.1016/j.jweia.2018.04.014.

[60] X. Zhou, L. Kang, M. Gu, L. Qiu, and J. Hu, "Numerical simulation and
wind tunnel test for redistribution of snow on a flat roof," Journal of
Wind Engineering and Industrial Aerodynamics, vol. 153, pp. 92-105,
2016/06/01/ 2016, doi: https://doi.org/10.1016/j.jweia.2016.03.008.

[61] X. Zhou, L. Kang, X. Yuan, and M. Gu, "Wind tunnel test of snow
redistribution on flat roofs," Cold Regions Science and Technology,
vol. 127, pp. 49-56, 2016/07/01/ 2016, doi:
https://doi.org/10.1016/j.coldregions.2016.04.006.

[62] "Download observations." Finnish Meteorological Institute.
https://en.ilmatieteenlaitos.fi/download-observations (accessed
11/09/23, 2023).

[63] A. K. Bhardwaj, D. Goldstein, A. Azenkot, and G. J. Levy, "Irrigation
with treated wastewater under different irrigation methods: Effects on
hydraulic conductivity of a clay soil," Geoderma, vol. 140, no. 1, pp.
199-206, 2007/06/15/ 2007, doi:
https://doi.org/10.1016/j.geoderma.2007.04.003.

https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-03/010066548.pdf
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-03/010066548.pdf
https://doi.org/10.1002/hyp.320
https://uk.mathworks.com/help/simulink/slref/simulating-systems-with-variable-transport-delay-phenomena.html#d126e746625
https://uk.mathworks.com/help/simulink/slref/simulating-systems-with-variable-transport-delay-phenomena.html#d126e746625
https://doi.org/10.1016/j.enbuild.2009.05.010
https://www.pipefittingweb.com/images/product/04_but-tweld-fittings/pdf/180-elbow-long-radius.pdf
https://www.pipefittingweb.com/images/product/04_but-tweld-fittings/pdf/180-elbow-long-radius.pdf
https://ttb.com/recent-news/diagrams/
https://www.engineeringtoolbox.com/overall-heat-transfer-coefficients-d_284.html
https://www.engineeringtoolbox.com/overall-heat-transfer-coefficients-d_284.html
https://doi.org/10.1016/j.jweia.2018.04.014
https://doi.org/10.1016/j.jweia.2016.03.008
https://doi.org/10.1016/j.coldregions.2016.04.006
https://en.ilmatieteenlaitos.fi/download-observations
https://doi.org/10.1016/j.geoderma.2007.04.003

 97

[64] P. S. S. eLibraryPRO. Soils - Part 2: Physical Properties of Soil and
Soil Water [Online] Available: http://passel-
test.unl.edu/beta/pages/informationmodule.php?idinformationmodule=
1130447039&topicorder=10&maxto=10&minto=1

[65] A. D. W. Nuijten and K. V. Høyland, "Modelling the thermal
conductivity of a melting snow layer on a heated pavement," Cold
Regions Science and Technology, vol. 140, pp. 20-29, 2017/08/01/
2017, doi: https://doi.org/10.1016/j.coldregions.2017.04.008.

[66] M. S. Roxy, V. B. Sumithranand, and G. Renuka, "Estimation of soil
moisture and its effect on soil thermal characteristics at Astronomical
Observatory, Thiruvananthapuram, south Kerala," Journal of Earth
System Science, vol. 123, no. 8, pp. 1793-1807, 2014/12/01 2014, doi:
10.1007/s12040-014-0509-x.

[67] J. T. F. Wong, K. L. Chow, X. W. Chen, C. W. W. Ng, and M. H.
Wong, "Effects of biochar on soil water retention curves of compacted
clay during wetting and drying," Biochar, vol. 4, no. 1, p. 4, 2022/01/20
2022, doi: 10.1007/s42773-021-00125-y.

[68] L. Zhao and D. M. Gray, "Estimating snowmelt infiltration into frozen
soils," Hydrological Processes, vol. 13, no. 12-13, pp. 1827-1842,
1999/09/01 1999, doi: https://doi.org/10.1002/(SICI)1099-
1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D.

[69] V. P. SINGH and C.-Y. XU, "Sensitivity of mass transfer-based
evaporation equations to errors in daily and monthly input data,"
Hydrological Processes, vol. 11, no. 11, pp. 1465-1473, 1997, doi:
https://doi.org/10.1002/(SICI)1099-1085(199709)11:11<1465::AID-
HYP452>3.0.CO;2-X.

[70] J. G. EARL HARBECK, "A Practical Field Technique For Measuring
Reservoir Evaporation Utilizing Mass-Transfer Theory," 1962. [Online].
Available: https://pubs.usgs.gov/pp/0272e/report.pdf.

[71] Z. Wang, H. Chen, and S. Weng, "“Partial pressures” of humid air in
wide pressure and temperature ranges," Frontiers in Energy, vol. 7,
no. 4, pp. 511-517, 2013/12/01 2013, doi: 10.1007/s11708-013-0281-
7.

[72] Y. Nawaz, M. S. Arif, and W. Shatanawi, "A New Fourth-Order
Predictor-Corrector Numerical Scheme for Heat Transfer by Darcy-
Forchheimer Flow of Micropolar Fluid with Homogeneous-
Heterogeneous Reactions," Applied Sciences, vol. 12, no. 12, doi:
10.3390/app12126072.

[73] "Finnish Meteorlogical Institute." https://en.ilmatieteenlaitos.fi/
(accessed 07/12, 2023).

[74] "District Heating Prices." Helen Ltd.
https://www.helen.fi/en/companies/heating-for-companies/district-
heating-for-companies/prices (accessed 2023).

[75] M. Khoshvaght-Aliabadi, H. Shabanpour, A. Alizadeh, and O.
Sartipzadeh, "Experimental assessment of different inserts inside
straight tubes: Nanofluid as working media," Chemical Engineering
and Processing: Process Intensification, vol. 97, pp. 1-11, 2015/11/01/
2015, doi: https://doi.org/10.1016/j.cep.2015.08.009.

http://passel-test.unl.edu/beta/pages/informationmodule.php?idinformationmodule=1130447039&topicorder=10&maxto=10&minto=1
http://passel-test.unl.edu/beta/pages/informationmodule.php?idinformationmodule=1130447039&topicorder=10&maxto=10&minto=1
http://passel-test.unl.edu/beta/pages/informationmodule.php?idinformationmodule=1130447039&topicorder=10&maxto=10&minto=1
https://doi.org/10.1016/j.coldregions.2017.04.008
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13
https://doi.org/10.1002/(SICI)1099-1085(199709)11:11
https://pubs.usgs.gov/pp/0272e/report.pdf
https://en.ilmatieteenlaitos.fi/
https://www.helen.fi/en/companies/heating-for-companies/district-heating-for-companies/prices
https://www.helen.fi/en/companies/heating-for-companies/district-heating-for-companies/prices
https://doi.org/10.1016/j.cep.2015.08.009

 98

7.0 Appendices

7.1 Appendix A1 – Reflective Report

Introduction

This reflective report outlines the overview of the project and team structure.

It includes details on the original objectives and of the teams working plan.

Finally, this report includes personal summaries of the reflections each group

member made throughout their exchange experience.

Project Overview and Team Structure

To allow for the greatest success with the group project early within the

process the team agreed on a coordinated working structure which allowed

for the group to be successful and make a genuine contribution to

Engineering.

Communications began in the early weeks of the project through discussions

with the project supervisor, Eero Immonen and the research assistants,

Fatemeh Ardaneh, Ashvin Chaudhari and Sajad Shahsavari who all work

within the Computational Engineering and Analysis (COMEA) research group

at Turku University of Applied Sciences.

The project titled “Model-Based Optimal Control of An Underground Heating

System” was proposed by Eero and develops work previously published by

COMEA in early 2023. Expectations and objectives were established and

agreed between the group and the supervisor. An initial plan was developed

in the form of a Gantt Chart and Statement of Purpose which was submitted

to Strathclyde for final approval.

Throughout the project each member of the group contributed and

collaborated with enthusiasm throughout the project. All group members

agreed on a 3-way split with no one member taking charge, however

Malcolm Irving-Robertson formally took on the role of project lead. It was his

responsibility for communicating with the project supervisors via email and

arranging meeting times and locations that suited every party, however all

team members actively contributed within bi-weekly supervisor meetings.

Objectives and Deliverables

In early September the group created an initial Gantt Chart which outlined a

plan for a rough timeframe to meet project objectives and deliverables. The

Gantt Chart included specific references to all the tasks required to complete

the objectives and deliverables shown in Appendix A2 – Gantt Chart. The

timeframe proposed within the initial Gantt Chart was not set in stone and

changed as the project developed. A formal meeting the group held every

Monday at 9 a.m. acted as an opportunity to discuss the plan for the

upcoming week, update the Gantt Chart following the progress of the

previous weeks and discuss any other issues which may present themselves.

 99

A deliverable required from Turku AMK was to produce general guidance

documents for the COMEA team to allow them to continue our work and

access our files once we return to Scotland. These guidance documents can

be found in Appendix H – General Guidance to Project Code and Appendix I

– Simulation Full Worked Example.

Changes to Timeframe

As the project progressed plans for the timeframe, objectives and final

deliverables shifted. This following section describes some key changed the

group faced during the Semester.

Firstly, after receiving feedback from the Project Supervisor on the Statement

of Purpose, the group shifted focus from their initial delegated tasks to work

on reviewing the project plan to be as efficient as possible. This updated plan

accommodated for the possibility of delays with different aspects of the

timeframe and the setbacks which could occur. Although this took longer

than initially expected to plan out, the group agreed it was beneficial to allow

for the project to go as smoothly as possible.

Another significant change to the project plan came when refining the

computational heat and mass balance model. The time frame initially

proposed was not an accurate estimation for how long the tasks took,

particularly with researching the effect of moisture transportation. Although

slightly disheartening to the team to be behind schedule the proposed

timeframe allowed for tasks to be pushed back whilst still managing all the

key deliverables. Tasks such as the sensitivity analyses and machine

learning however took less time that originally set out. This allowed the team

sufficient time from early December to organise the results, write the report

and complete any remaining tasks.

Time Management and Working Plan

The group agreed on a plan and timeframe for the project during the first

week and discussed expectations. It was agreed that the best way to run the

project was as a Monday to Friday, 9 a.m. to 5 p.m. This was a good way to

allow for a healthy work-life balance as the team is taking at least one day

away from the project each week to have a break from the work.

The group work took place at least 4 days a week in person on the university

campus and the other day was done working from home. This change of

scenery and more relaxed environment allowed for good progress to be

made continuously throughout. Although the group set out these working

hours there was flexibility and trust within the team, which meant that an

individual could adapt their hours to suit their schedule. This worked very well

during times when the group were at weekday events, had family visiting or

were travelling to visit new cities.

Part of the agreed upon plan required that a record of all work was kept

within a collaborative logbook which got updated daily. This acted as a form

of communication keeping a dated record of what everyone had been

working on and achieved on specific days. The group also made great use of

 100

different collaborative cloud based working software tools such as OneDrive,

for any Word Documents, Excels or PowerPoints created, and GitHub saving

all Python code, results and ANSYS projects.

The group attended supervisor meetings which took place bi-weekly on

Tuesdays from 12-2pm and allowed for the group to delve into the technical

aspects of the project, report on findings and seek advice on any problems

encountered. This meeting was the primary opportunity to discuss anything

project related with Eero and the COMEA team. However, additionally,

communication was possible outside of these formal meetings, via email or

Microsoft Teams.

Personal Reflections Overview

Throughout the entirety of the project each of the three group members kept

a personal reflective log which included details and reflections of all aspects

of the project including progress made, difficulties encountered and

experience working as a team. The sections below include these reflections.

Overall, the group worked together extremely successfully, and the positive

results and progress achieved has reflected on this directly. All group

members continuously contributed to the project work, aiming to bring the

same level of enthusiasm each day. We were successful in cultivating an

environment that boosted individual morale on days when group members

may have felt discouraged. There were no cases of an individual feeling as

though not everyone is pulling their own weight, and the equal 3-way

distribution of tasks has made working on the project an enjoyable

experience.

The group consisted of 3 peers who prior to exchange only knew one another

from university lectures but quickly became great friends. This was very

beneficial to the group dynamic as it allowed for open communications to

happen to address the successes or challenges which may come up. The

strong communication within the group allowed for easy adaptability and

flexibility with tasks and timeframes.

When difficulties arose throughout this project, such as with the refinement of

the snow melting model, individual team members did not lose any

motivation despite the challenges faced being bigger than expected. All team

members were willing to help with all problems throughout despite them not

being specifically assigned tasks to them. On reflection this was an extremely

successful mindset to have with any group project as the entire group worked

as a team and supported each other in whatever way they could.

The entirety of the group project and study abroad experience was an

excellent learning experience for all. All group members have previous

experience working in teams as part of their time at university, however

nothing compared to the scale of this project.

On top of the significant challenge of producing a piece of academic work to

the scale of this report there were also many external factors which

influenced the members of the group throughout the process. Most

 101

significantly were the effects of moving abroad to a new country. Difficulties

with culture shock and adapting to new lifestyles came hand in hand as the

work developed.

The group understands the importance of having a healthy work life balance

which allowed for all to make the most out of their entire exchange and throw

themselves headfirst into all experiences that were given to them.

Erin’s Personal Reflections

My experience working as part of a group within this project has been

extremely positive overall and very beneficial to my future professional

experience as a graduate engineer. The skills I have gained and the lessons

I have learned throughout the entirety of my exchange will stay with me far

beyond my time at university.

Working on a group project of this scale has allowed me to develop my

communication skills within a team environment. Working daily for over 4

months with a small group of peers has made me realise how vital it is to

develop strong relationships with one another in order for open and healthy

communications to take place. I believe that our group worked very well at

discussing all aspects of the project from planning what our objectives and

timeframe were to developing our technical content and progressing with the

formal writeups. We openly discussed and debated the highs and lows of our

projects process in a healthy and professional manner, allowing every

member of the group to have their voice heard and actively listening to what

everyone had to say.

My experience working on this project has allowed me to massively improve

my time management and organisational skills. Prior to this experience I

often had difficulties with separating my work life balance. In previous years I

was guilty of working minimal hours some days and then working excessively

others, this would often result in a burnout and resentment to whatever task I

was working towards. However, the effective way our group has planned our

schedule this past semester has allowed for clear goals and expectations to

be achieved within a reasonable timeframe. The way in which we have

structured our time throughout this project and the techniques we used to do

so such as developing and regularly updating the Gantt chart and agreeing

on a weekly working schedule which suits all team members, are techniques

which will stay with me beyond this project.

My programming experience prior to starting this project was minimal.

Beyond what basic MATLAB was included as part of my first- and second-

year classes I would say I had practically no experience or confidence with

anything of the sorts. This however is not the case anymore as my

experience working for months developing and improving the computational

model on python has reinforced the foundational skills which I had and

allowed me to develop a greater understanding for Python and similar

programming languages. I am now far more confident and competent when

doing any such task which requires an understanding of Python, so much so

that I have amended my curriculum for the second semester to take classes

 102

such as 16565: Engineering Composites which require the student to be able

to work on any programming language. Although exclusively working on

Python this semester the skills are transferable.

This project has introduced me to new areas of interest in the form on

machine learning and decision trees. An area of engineering which I had no

previous experience with I have learned throughout this project the basis of it,

and I am keen to continue to expand my interest beyond the scope of this

project.

This project and the entirety of my exchange experience has forced me to

step out with my comfort zone and form professional relationships with

people from a range of countries. Our bi-weekly meetings with the COMEA

team were an excellent opportunity to discuss a wide variety of questions,

concerns, and comments about our project with specialist researchers.

Our group also took part in a student and company brokerage event at Turku

University of Applied Science in mid-November. This event consisted of a

series of lectures and seminars with the general themes of sports and

exercise. Both Strathclyde groups on exchange in Turku have projects

related to these themes, our group with underfloor heating of a football pitch

and the other team with a project about optimising the perfect race for a

runner and an eRallycross car. Our group set up a stand, created posters

and a PowerPoint and had the opportunity to talk with the participants of the

event during their coffee break Figure 74 and Figure 75 is an example of one

of the posters we produced and our group at the event. The audience came

from a range of backgrounds with varying technical knowledge, so event was

an excellent opportunity to talk about our project in several different ways

allowing our audience to have a clear understanding of the work we have

done and our final goals for the end of our project.

Figure 74: Poster from Turku AMK Event

 103

Figure 75: Group Presentation at Turku AMK Event

Although my overall experience working in this group was positive and my

entire exchange is one which I will cherish forever, it is important to address

both the ups and downs and determine what could be improved for similar

ventures in the future. Working in any group comes with it owns challenges

and our group was no exception. There were occasions which each of us

within the group would lose motivation and be disheartened when the task

we were working on would not progress the way we were hoping. These

feelings could last for several days at a time but thankfully not any longer due

to the encouraging nature of our group. It is important to stay positive when

difficulties arise with academic work and remember that you will get there in

the end.

Towards the beginning of this project our group incorrectly estimated the time

some tasks would take such as with the refining of the snow melting model.

We were advised from our academic supervisor to allow ourselves more time

to complete said tasks, but even with the additional time given we were still

behind schedule. This was not an issue with completing the entire project on

time as we and our supervisor were confident that all would work out

however some group members became obsessed with if we were on track or

not which would stress everyone out far more than needed to be. I tried to

stay optimistic throughout and encouraging for all team members. The

challenge of working on this project has taught me so much about time

management and meeting deadlines. It is important to realistically plan the

timeframe of tasks and to understand that setbacks happen but not to be

unmotivated by them. This is an important lesson which I have learned, and I

will keep with me throughout the remainder of my university experience and

throughout my professional career.

Kaloyan’s Personal Reflections

 104

Working on this project over the course of my exchange period has been an

incredibly delightful experience. Our group was able to quickly settle into a

dynamic where discussions could easily take place about the work and the

progression of different aspects of the project, and everyone was able to

contribute equally to the completion of the various objectives.

The decisions that we made at the beginning of the semester with regards to

how work should take place, mostly collaborative on campus, really

contributed to creating an encouraging environment and all members of the

group were always readily available to discuss and help with any issues

faced in individual tasks. This helped me develop my collaborative and team

working skills greatly, as working on the project full-time, and experiencing all

the positives and negatives that come with that, are common occurrences in

the work of any graduate student. Learning how to effectively manage those

relationships is an important skill which is transferrable to any future

undertaking.

This was further underlined in our work with our supervisor, and the COMEA

research team. From the very beginning, they were incredibly active and

provided us with a lot of support in understanding the work that they had

already carried out, and what the objectives were for the project that they had

set out for us. They were also extremely helpful with any technical challenges

we faced and were keen on understanding the new developments we

brought to the existing code. Building that relationship continuously was

something that I felt required me to learn to effectively communicate these

issues to someone who might not be directly involved with the project but had

an area of expertise which was relevant to the task that I was working on.

Moreover, the nature of the project allowed me to massively improve my

skills and confidence working with programming languages, an important skill

which is transferable to many fields of engineering. Python was the

environment we utilised during the project, on the recommendation of our

supervisor, and only one member of our group had any previous experience

working outside of MATLAB. This meant that we had to quickly learn to adapt

to a new coding environment so that we could tackle the technical aspects of

the project effectively. Fortunately, these types of programming languages

share many similarities so the foundational knowledge of how to operate

them was relatively easy to establish for Python. The work also went beyond

anything I had previously done, stretching into areas I found inaccessible

before starting this project, such as optimisation and machine learning.

Learning the complicated inner workings of these processes has allowed me

to gain invaluable experience which could be implemented in projects well

beyond my time at university.

Another big takeaway from this experience has been learning to better

manage my own workload. Maintaining a good balance between work and

finding the time to rest and do other things I enjoy has been something I have

struggled with previously. I found this to be the case again at some points

over the course of the semester, leading to days where I felt I was

contributing very little to the task I was working on. This could sometimes be

 105

exacerbated by the fact that a big part of research projects in general is that

they do not have a clear path or an intended result. Exploring different

avenues is part of the process and progress is being made even when it

appears that an unsuitable result has been reached. As the semester

progressed, I found it easier to set more realistic expectations for myself, in

large part through collaboration and discussion with the other members of my

group. The way in which we organised our work accommodated for those

issues and still allowed us to stay on track to finish the project on time and

has been an important learning experience.

The close relationships we were able to build within our group were very

important to the success of the project. We had the opportunity to attend

events outside of our work at university together, allowing us spend time with

each other in a less professional setting while also learning more about

Finnish culture. Getting to know the people we were working with on a more

personal level made communication easier and helped significantly in

maintaining a good work-life balance, avoiding the pitfalls of constantly

focusing on which tasks remained to be done.

In addition to the Student Brokerage event, we were given an additional

opportunity to present our work at the Capstone competition taking place on

the university campus. For this, we developed a 3-minute PowerPoint

presentation which detailed the technical work we completed over the course

of the project and presented in front of a panel of staff members and other

parties interested in the projects. While our projects were not allowed to

participate in the competition due to the level of technical complexity

involved, this was invaluable experience in learning to adapt our approach to

communicating the content of our project to people of different academic

backgrounds and for networking, allowing us to learn more about the various

projects that Turku University was undertaking in cooperation with industry

partners.

Malcolm’s Personal Reflections

I have had a thoroughly enjoyable time working on this project with my other

group members. Our communication quality was consistently high, and we

did not have any issues with lack of input or an uneven workload. I was very

impressed with their level of motivation and felt energised while collaborating

as a group.

In the early weeks we faced an initial challenge after our Statement of

Purpose review meeting with our supervisor. Once the feedback was

received, we postponed our current delegated tasks and returned to redraft

the statement of purpose. It was quickly altered to bring the supervisor

comments on board and was a good example of the flexibility we aimed to

maintain during the project. During supervisor meetings in future weeks, we

were all engaged and motivated to ask important questions that would allow

us to progress. We were also good at encouraging group members to

request further help from supervisors if they needed it.

 106

Being able to book rooms at the university was very helpful in providing a

quiet space for us to focus and discuss key issues in our project. As a group

have been good at supporting each other with individual difficulties. We have

shown understanding and patience when explaining issues in our delegated

tasks.

In terms of my own development, I feel that this project has been an excellent

opportunity to build on my existing experience with Python. It has been

enjoyable to discover how Python code can be harnessed in the field of

engineering optimisation, and I feel that this experience will be very useful in

my future career. Equally, the project was a chance to expand my knowledge

of Ansys Fluent. Throughout my time at university, I had opportunities to use

the software through projects, however I had never used the software to

freely create a CFD study. I feel like I have gained a new level of

understanding that will be very useful when using the software again in the

workplace.

Before this semester, I had never participated in a research project, in which

we were expected to continually update conclusions, and had an element of

uncertainty on the results. I think this experience again translates well to the

work that I will conduct in future, preparing me for the element of

unpredictability that exists in many engineering positions.

I met my two group project partners for the first time at the beginning of this

exchange, and since then I feel that we all become close friends. We get

along very well with each other, and we will make sure to meet again next

semester. The friendship formed with Erin and Kaloyan made my exchange

experience all the more worthwhile and on top of working together on this

project we also made sure to get the most out of our cultural exchange by

attending events within Finland. We were even able to travel to new countries

together, a picture of our group on a hike in Bergen, Norway is shown in

Figure 76.

 107

Figure 76: Group Turku 1 in Norway

As mentioned in the interim report, we aimed for a good level of flexibility,

and I was very happy with how we managed this throughout the project.

When parents visited or we were required to attend residence permit

appointments, we were able to adjust timescales accordingly without

disruption. Occasionally working from home to continue tasks was very

beneficial, providing a change of atmosphere and renewed focus.

Reflecting on my time as project manager, I believe that the leadership

experience I have gained has been invaluable, and it has provided me with

areas to improve for future leadership roles. Firstly, I thoroughly enjoyed

supporting the development of my group members, while they grew their

skills in Python and in Machine Learning. I enjoyed helping to explain certain

procedures, breaking down key points to aid understanding. I also enjoyed

leading weekly progress meetings, as I found that in addition to making other

group member’s issues with subtasks known, it helped me to solidify my

weekly goals for my own subtasks. When submitting documents such as the

Interim Report, I felt proud of what the group had accomplished. For the next

leadership opportunity, I would like to look at new ways to review progress

and improve morale. Based on our reflections of project management and of

the process as a whole, there were a few general points that we noted as

areas we would improve if undertaking the project again. The table below

lays out and ranks the potential benefit of techniques for future projects:

 108

Table 16: Possible Future Actions

Technique Description Benefits Potential
Ranking

Data Graphic Creating a data-
focused graphic
for each weekly
meeting, or on a
bi-weekly basis.

Group members
would be able to
see how far we
have come, and
what needs to be
done to ensure
success.

Medium
(Possibility for
increased morale,
and a better
understanding of
project progress)

Work Style
Experimentation

Designating time
for group
members to
experiment with a
range of different
work styles.

Group members
could discover a
more comfortable
or efficient way of
completing a
task.

High
(Possibility for
increased
efficiency,
motivation and
work quality)

Risk Diagnosis It would be
interesting to
develop a risk
diagnosis system.
This could be
done manually
with a diagram, or
even in Python,
with a simple
algorithm to
classify a
problem.

We could use
categories to
group problems,
and automatically
reach relevant
solutions. It would
also allow us to
rank issues and
instantly know
how to best
prioritise it among
other tasks.

Medium
(Potential to save
time and make
risk prevention
simpler)

Deepen
knowledge of
GitHub,
OneDrive and
other tools

If conducting the
project again, we
would aim to gain
further
experience in
using
collaborative
software.

We would be able
to use every
feature available
to us, and ensure
maximum
functionality.

Low
(Existing
knowledge is of a
good level, but
there may be
room to discover
time-saving
techniques)

Turku University of Applied Sciences was a fantastic setting for the project,

with brand new facilities for working. The location was very comfortable, and I

think it has helped us to put forward our best work. I am very grateful to have

been a part of this exchange.

Conclusions

This reflective report summarises the entirety of this group’s experience on

exchange at Turku University of Applied Science. Details of project

management and progress are discussed and reflected upon. Each group

member reported on their personal experience of the project and exchange.

Overall, it can be concluded that all members of the team reflect very

positively on their time in Finland and working together on this group project.

 109

7.2 Appendix A2 – Gantt Chart

 110

7.3 Appendix B – Average Wind Speed

 111

7.4 Appendix C – URL for Finnish Meteorological

Institute Website (Download Observations)
https://en.ilmatieteenlaitos.fi/download-observations

 112

7.5 Appendix D – Graphviz Data for Optimal Control

Decision Tree
digraph Tree {

node [shape=box, fontname="helvetica"] ;

edge [fontname="helvetica"] ;

0 [label="Air Temperature <= 0.274\nsquared_error = 0.24\nsamples =

2400\nvalue = [[0.402]\n[0.605]]"] ;

1 [label="Liquid Flow Rate <= 0.393\nsquared_error = 0.165\nsamples

= 1558\nvalue = [[0.101]\n[0.6]]"] ;

0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;

2 [label="Precipitation Amount <= 0.018\nsquared_error =

0.079\nsamples = 629\nvalue = [[0.105]\n[0.93]]"] ;

1 -> 2 ;

3 [label="Cloud Amount <= 2.357\nsquared_error = 0.049\nsamples =

9\nvalue = [[1.0]\n[0.889]]"] ;

2 -> 3 ;

4 [label="squared_error = 0.0\nsamples = 1\nvalue = [[1.0]\n[0.0]]"]

;

3 -> 4 ;

5 [label="squared_error = 0.0\nsamples = 8\nvalue = [[1.0]\n[1.0]]"]

;

3 -> 5 ;

6 [label="Delta T <= 16.131\nsquared_error = 0.074\nsamples =

620\nvalue = [[0.092]\n[0.931]]"] ;

2 -> 6 ;

7 [label="Wind Speed <= 7.714\nsquared_error = 0.049\nsamples =

500\nvalue = [[0.09]\n[0.984]]"] ;

6 -> 7 ;

8 [label="Air Temperature <= -0.119\nsquared_error = 0.029\nsamples

= 428\nvalue = [[0.042]\n[0.981]]"] ;

7 -> 8 ;

9 [label="Liquid Flow Rate <= 0.006\nsquared_error = 0.019\nsamples

= 411\nvalue = [[0.022]\n[0.983]]"] ;

8 -> 9 ;

10 [label="Delta T <= 9.94\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.667]\n[1.0]]"] ;

9 -> 10 ;

11 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

10 -> 11 ;

12 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

10 -> 12 ;

13 [label="Delta T <= 13.81\nsquared_error = 0.017\nsamples =

408\nvalue = [[0.017]\n[0.983]]"] ;

9 -> 13 ;

14 [label="Wind Speed <= 6.268\nsquared_error = 0.01\nsamples =

345\nvalue = [[0.02]\n[1.0]]"] ;

13 -> 14 ;

15 [label="Air Temperature <= -0.25\nsquared_error = 0.002\nsamples

= 283\nvalue = [[0.004]\n[1.0]]"] ;

14 -> 15 ;

16 [label="squared_error = 0.0\nsamples = 281\nvalue =

[[0.0]\n[1.0]]"] ;

15 -> 16 ;

17 [label="Snow Depth <= 9.363\nsquared_error = 0.125\nsamples =

2\nvalue = [[0.5]\n[1.0]]"] ;

15 -> 17 ;

18 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

17 -> 18 ;

19 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

 113

17 -> 19 ;

20 [label="Air Temperature <= -13.149\nsquared_error =

0.044\nsamples = 62\nvalue = [[0.097]\n[1.0]]"] ;

14 -> 20 ;

21 [label="Precipitation Intensity <= 5.5\nsquared_error =

0.111\nsamples = 3\nvalue = [[0.667]\n[1.0]]"] ;

20 -> 21 ;

22 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

21 -> 22 ;

23 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

21 -> 23 ;

24 [label="Delta T <= 0.238\nsquared_error = 0.032\nsamples =

59\nvalue = [[0.068]\n[1.0]]"] ;

20 -> 24 ;

25 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

24 -> 25 ;

26 [label="Precipitation Amount <= 1.17\nsquared_error =

0.025\nsamples = 58\nvalue = [[0.052]\n[1.0]]"] ;

24 -> 26 ;

27 [label="Snow Depth <= 10.524\nsquared_error = 0.064\nsamples =

20\nvalue = [[0.15]\n[1.0]]"] ;

26 -> 27 ;

28 [label="Liquid Flow Rate <= 0.062\nsquared_error = 0.125\nsamples

= 6\nvalue = [[0.5]\n[1.0]]"] ;

27 -> 28 ;

29 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

28 -> 29 ;

30 [label="Delta T <= 11.905\nsquared_error = 0.094\nsamples =

4\nvalue = [[0.75]\n[1.0]]"] ;

28 -> 30 ;

31 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

30 -> 31 ;

32 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

30 -> 32 ;

33 [label="squared_error = 0.0\nsamples = 14\nvalue =

[[0.0]\n[1.0]]"] ;

27 -> 33 ;

34 [label="squared_error = 0.0\nsamples = 38\nvalue =

[[0.0]\n[1.0]]"] ;

26 -> 34 ;

35 [label="Liquid Flow Rate <= 0.318\nsquared_error = 0.049\nsamples

= 63\nvalue = [[0.0]\n[0.889]]"] ;

13 -> 35 ;

36 [label="squared_error = 0.0\nsamples = 55\nvalue =

[[0.0]\n[1.0]]"] ;

35 -> 36 ;

37 [label="Precipitation Amount <= 0.643\nsquared_error =

0.055\nsamples = 8\nvalue = [[0.0]\n[0.125]]"] ;

35 -> 37 ;

38 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

37 -> 38 ;

39 [label="squared_error = 0.0\nsamples = 7\nvalue =

[[0.0]\n[0.0]]"] ;

37 -> 39 ;

40 [label="Precipitation Intensity <= 3.696\nsquared_error =

0.152\nsamples = 17\nvalue = [[0.529]\n[0.941]]"] ;

8 -> 40 ;

 114

41 [label="squared_error = 0.0\nsamples = 7\nvalue =

[[1.0]\n[1.0]]"] ;

40 -> 41 ;

42 [label="Precipitation Amount <= 1.455\nsquared_error =

0.125\nsamples = 10\nvalue = [[0.2]\n[0.9]]"] ;

40 -> 42 ;

43 [label="Wind Speed <= 1.232\nsquared_error = 0.061\nsamples =

7\nvalue = [[0.0]\n[0.857]]"] ;

42 -> 43 ;

44 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

43 -> 44 ;

45 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

43 -> 45 ;

46 [label="Snow Depth <= 3.405\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.667]\n[1.0]]"] ;

42 -> 46 ;

47 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

46 -> 47 ;

48 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

46 -> 48 ;

49 [label="Precipitation Amount <= 1.482\nsquared_error =

0.117\nsamples = 72\nvalue = [[0.375]\n[1.0]]"] ;

7 -> 49 ;

50 [label="Air Temperature <= -4.048\nsquared_error = 0.124\nsamples

= 30\nvalue = [[0.533]\n[1.0]]"] ;

49 -> 50 ;

51 [label="Delta T <= 1.369\nsquared_error = 0.114\nsamples =

17\nvalue = [[0.353]\n[1.0]]"] ;

50 -> 51 ;

52 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

51 -> 52 ;

53 [label="Delta T <= 12.381\nsquared_error = 0.098\nsamples =

15\nvalue = [[0.267]\n[1.0]]"] ;

51 -> 53 ;

54 [label="Wind Speed <= 7.768\nsquared_error = 0.041\nsamples =

11\nvalue = [[0.091]\n[1.0]]"] ;

53 -> 54 ;

55 [label="Cloud Amount <= 4.152\nsquared_error = 0.125\nsamples =

2\nvalue = [[0.5]\n[1.0]]"] ;

54 -> 55 ;

56 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

55 -> 56 ;

57 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

55 -> 57 ;

58 [label="squared_error = 0.0\nsamples = 9\nvalue =

[[0.0]\n[1.0]]"] ;

54 -> 58 ;

59 [label="Cloud Amount <= 4.929\nsquared_error = 0.094\nsamples =

4\nvalue = [[0.75]\n[1.0]]"] ;

53 -> 59 ;

60 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

59 -> 60 ;

61 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

59 -> 61 ;

 115

62 [label="Cloud Amount <= 6.75\nsquared_error = 0.089\nsamples =

13\nvalue = [[0.769]\n[1.0]]"] ;

50 -> 62 ;

63 [label="squared_error = 0.0\nsamples = 10\nvalue =

[[1.0]\n[1.0]]"] ;

62 -> 63 ;

64 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

62 -> 64 ;

65 [label="Precipitation Intensity <= 2.375\nsquared_error =

0.097\nsamples = 42\nvalue = [[0.262]\n[1.0]]"] ;

49 -> 65 ;

66 [label="Liquid Flow Rate <= 0.11\nsquared_error = 0.124\nsamples

= 15\nvalue = [[0.533]\n[1.0]]"] ;

65 -> 66 ;

67 [label="Cloud Amount <= 6.67\nsquared_error = 0.086\nsamples =

9\nvalue = [[0.222]\n[1.0]]"] ;

66 -> 67 ;

68 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

67 -> 68 ;

69 [label="Precipitation Intensity <= 0.357\nsquared_error =

0.111\nsamples = 3\nvalue = [[0.667]\n[1.0]]"] ;

67 -> 69 ;

70 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

69 -> 70 ;

71 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

69 -> 71 ;

72 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[1.0]\n[1.0]]"] ;

66 -> 72 ;

73 [label="Air Temperature <= -10.268\nsquared_error =

0.049\nsamples = 27\nvalue = [[0.111]\n[1.0]]"] ;

65 -> 73 ;

74 [label="Air Temperature <= -10.988\nsquared_error =

0.125\nsamples = 4\nvalue = [[0.5]\n[1.0]]"] ;

73 -> 74 ;

75 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

74 -> 75 ;

76 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

74 -> 76 ;

77 [label="Liquid Flow Rate <= 0.018\nsquared_error = 0.021\nsamples

= 23\nvalue = [[0.043]\n[1.0]]"] ;

73 -> 77 ;

78 [label="Precipitation Intensity <= 4.125\nsquared_error =

0.125\nsamples = 2\nvalue = [[0.5]\n[1.0]]"] ;

77 -> 78 ;

79 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

78 -> 79 ;

80 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

78 -> 80 ;

81 [label="squared_error = 0.0\nsamples = 21\nvalue =

[[0.0]\n[1.0]]"] ;

77 -> 81 ;

82 [label="Liquid Flow Rate <= 0.262\nsquared_error = 0.148\nsamples

= 120\nvalue = [[0.1]\n[0.708]]"] ;

6 -> 82 ;

 116

83 [label="Wind Speed <= 8.759\nsquared_error = 0.045\nsamples =

81\nvalue = [[0.099]\n[1.0]]"] ;

82 -> 83 ;

84 [label="Air Temperature <= -0.119\nsquared_error = 0.03\nsamples

= 77\nvalue = [[0.065]\n[1.0]]"] ;

83 -> 84 ;

85 [label="Wind Speed <= 6.964\nsquared_error = 0.019\nsamples =

75\nvalue = [[0.04]\n[1.0]]"] ;

84 -> 85 ;

86 [label="squared_error = 0.0\nsamples = 57\nvalue =

[[0.0]\n[1.0]]"] ;

85 -> 86 ;

87 [label="Cloud Amount <= 2.625\nsquared_error = 0.069\nsamples =

18\nvalue = [[0.167]\n[1.0]]"] ;

85 -> 87 ;

88 [label="Air Temperature <= -8.958\nsquared_error = 0.122\nsamples

= 7\nvalue = [[0.429]\n[1.0]]"] ;

87 -> 88 ;

89 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

88 -> 89 ;

90 [label="Snow Depth <= 14.161\nsquared_error = 0.094\nsamples =

4\nvalue = [[0.75]\n[1.0]]"] ;

88 -> 90 ;

91 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

90 -> 91 ;

92 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

90 -> 92 ;

93 [label="squared_error = 0.0\nsamples = 11\nvalue =

[[0.0]\n[1.0]]"] ;

87 -> 93 ;

94 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

84 -> 94 ;

95 [label="Cloud Amount <= 5.571\nsquared_error = 0.094\nsamples =

4\nvalue = [[0.75]\n[1.0]]"] ;

83 -> 95 ;

96 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

95 -> 96 ;

97 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

95 -> 97 ;

98 [label="Liquid Flow Rate <= 0.286\nsquared_error = 0.092\nsamples

= 39\nvalue = [[0.103]\n[0.103]]"] ;

82 -> 98 ;

99 [label="Delta T <= 17.202\nsquared_error = 0.12\nsamples =

10\nvalue = [[0.0]\n[0.4]]"] ;

98 -> 99 ;

100 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

99 -> 100 ;

101 [label="Cloud Amount <= 3.482\nsquared_error = 0.094\nsamples =

8\nvalue = [[0.0]\n[0.25]]"] ;

99 -> 101 ;

102 [label="Wind Speed <= 8.116\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.0]\n[0.667]]"] ;

101 -> 102 ;

103 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

102 -> 103 ;

 117

104 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

102 -> 104 ;

105 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[0.0]\n[0.0]]"] ;

101 -> 105 ;

106 [label="Precipitation Amount <= 0.143\nsquared_error =

0.059\nsamples = 29\nvalue = [[0.138]\n[0.0]]"] ;

98 -> 106 ;

107 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

106 -> 107 ;

108 [label="Cloud Amount <= 0.562\nsquared_error = 0.048\nsamples =

28\nvalue = [[0.107]\n[0.0]]"] ;

106 -> 108 ;

109 [label="Precipitation Intensity <= 3.625\nsquared_error =

0.125\nsamples = 4\nvalue = [[0.5]\n[0.0]]"] ;

108 -> 109 ;

110 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

109 -> 110 ;

111 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

109 -> 111 ;

112 [label="Liquid Flow Rate <= 0.381\nsquared_error = 0.02\nsamples

= 24\nvalue = [[0.042]\n[0.0]]"] ;

108 -> 112 ;

113 [label="squared_error = 0.0\nsamples = 21\nvalue =

[[0.0]\n[0.0]]"] ;

112 -> 113 ;

114 [label="Snow Depth <= 20.274\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.333]\n[0.0]]"] ;

112 -> 114 ;

115 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

114 -> 115 ;

116 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

114 -> 116 ;

117 [label="Delta T <= 6.786\nsquared_error = 0.162\nsamples =

929\nvalue = [[0.098]\n[0.377]]"] ;

1 -> 117 ;

118 [label="Delta T <= 5.595\nsquared_error = 0.082\nsamples =

329\nvalue = [[0.1]\n[0.921]]"] ;

117 -> 118 ;

119 [label="Wind Speed <= 8.089\nsquared_error = 0.05\nsamples =

267\nvalue = [[0.097]\n[0.989]]"] ;

118 -> 119 ;

120 [label="Air Temperature <= -0.905\nsquared_error =

0.033\nsamples = 246\nvalue = [[0.061]\n[0.992]]"] ;

119 -> 120 ;

121 [label="Precipitation Amount <= 0.018\nsquared_error =

0.021\nsamples = 226\nvalue = [[0.035]\n[0.991]]"] ;

120 -> 121 ;

122 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

121 -> 122 ;

123 [label="Wind Speed <= 6.696\nsquared_error = 0.019\nsamples =

225\nvalue = [[0.031]\n[0.991]]"] ;

121 -> 123 ;

124 [label="Liquid Flow Rate <= 0.423\nsquared_error =

0.005\nsamples = 188\nvalue = [[0.005]\n[0.995]]"] ;

123 -> 124 ;

 118

125 [label="Precipitation Amount <= 0.411\nsquared_error =

0.08\nsamples = 5\nvalue = [[0.2]\n[1.0]]"] ;

124 -> 125 ;

126 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

125 -> 126 ;

127 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

125 -> 127 ;

128 [label="Liquid Flow Rate <= 0.97\nsquared_error = 0.003\nsamples

= 183\nvalue = [[0.0]\n[0.995]]"] ;

124 -> 128 ;

129 [label="squared_error = 0.0\nsamples = 176\nvalue =

[[0.0]\n[1.0]]"] ;

128 -> 129 ;

130 [label="Delta T <= 4.94\nsquared_error = 0.061\nsamples =

7\nvalue = [[0.0]\n[0.857]]"] ;

128 -> 130 ;

131 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

130 -> 131 ;

132 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

130 -> 132 ;

133 [label="Air Temperature <= -11.905\nsquared_error =

0.081\nsamples = 37\nvalue = [[0.162]\n[0.973]]"] ;

123 -> 133 ;

134 [label="Snow Depth <= 5.494\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.667]\n[1.0]]"] ;

133 -> 134 ;

135 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

134 -> 135 ;

136 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

134 -> 136 ;

137 [label="Liquid Flow Rate <= 0.557\nsquared_error =

0.066\nsamples = 34\nvalue = [[0.118]\n[0.971]]"] ;

133 -> 137 ;

138 [label="Precipitation Intensity <= 1.875\nsquared_error =

0.122\nsamples = 7\nvalue = [[0.429]\n[1.0]]"] ;

137 -> 138 ;

139 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

138 -> 139 ;

140 [label="Precipitation Amount <= 2.268\nsquared_error =

0.094\nsamples = 4\nvalue = [[0.75]\n[1.0]]"] ;

138 -> 140 ;

141 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

140 -> 141 ;

142 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

140 -> 142 ;

143 [label="Delta T <= 5.298\nsquared_error = 0.036\nsamples =

27\nvalue = [[0.037]\n[0.963]]"] ;

137 -> 143 ;

144 [label="Air Temperature <= -3.655\nsquared_error = 0.02\nsamples

= 24\nvalue = [[0.042]\n[1.0]]"] ;

143 -> 144 ;

145 [label="squared_error = 0.0\nsamples = 19\nvalue =

[[0.0]\n[1.0]]"] ;

144 -> 145 ;

 119

146 [label="Cloud Amount <= 5.92\nsquared_error = 0.08\nsamples =

5\nvalue = [[0.2]\n[1.0]]"] ;

144 -> 146 ;

147 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

146 -> 147 ;

148 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

146 -> 148 ;

149 [label="Precipitation Intensity <= 1.357\nsquared_error =

0.111\nsamples = 3\nvalue = [[0.0]\n[0.667]]"] ;

143 -> 149 ;

150 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

149 -> 150 ;

151 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

149 -> 151 ;

152 [label="Cloud Amount <= 1.393\nsquared_error = 0.114\nsamples =

20\nvalue = [[0.35]\n[1.0]]"] ;

120 -> 152 ;

153 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

152 -> 153 ;

154 [label="Cloud Amount <= 7.795\nsquared_error = 0.09\nsamples =

17\nvalue = [[0.235]\n[1.0]]"] ;

152 -> 154 ;

155 [label="Snow Depth <= 0.542\nsquared_error = 0.058\nsamples =

15\nvalue = [[0.133]\n[1.0]]"] ;

154 -> 155 ;

156 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

155 -> 156 ;

157 [label="Precipitation Intensity <= 5.732\nsquared_error =

0.033\nsamples = 14\nvalue = [[0.071]\n[1.0]]"] ;

155 -> 157 ;

158 [label="squared_error = 0.0\nsamples = 12\nvalue =

[[0.0]\n[1.0]]"] ;

157 -> 158 ;

159 [label="Wind Speed <= 4.232\nsquared_error = 0.125\nsamples =

2\nvalue = [[0.5]\n[1.0]]"] ;

157 -> 159 ;

160 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

159 -> 160 ;

161 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

159 -> 161 ;

162 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

154 -> 162 ;

163 [label="Air Temperature <= -7.78\nsquared_error = 0.147\nsamples

= 21\nvalue = [[0.524]\n[0.952]]"] ;

119 -> 163 ;

164 [label="Snow Depth <= 1.857\nsquared_error = 0.109\nsamples =

8\nvalue = [[0.125]\n[0.875]]"] ;

163 -> 164 ;

165 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

164 -> 165 ;

166 [label="Liquid Flow Rate <= 0.896\nsquared_error =

0.061\nsamples = 7\nvalue = [[0.0]\n[0.857]]"] ;

164 -> 166 ;

 120

167 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

166 -> 167 ;

168 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

166 -> 168 ;

169 [label="Snow Depth <= 16.792\nsquared_error = 0.089\nsamples =

13\nvalue = [[0.769]\n[1.0]]"] ;

163 -> 169 ;

170 [label="squared_error = 0.0\nsamples = 7\nvalue =

[[1.0]\n[1.0]]"] ;

169 -> 170 ;

171 [label="Delta T <= 2.262\nsquared_error = 0.125\nsamples =

6\nvalue = [[0.5]\n[1.0]]"] ;

169 -> 171 ;

172 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

171 -> 172 ;

173 [label="Precipitation Amount <= 1.527\nsquared_error =

0.094\nsamples = 4\nvalue = [[0.25]\n[1.0]]"] ;

171 -> 173 ;

174 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

173 -> 174 ;

175 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

173 -> 175 ;

176 [label="Liquid Flow Rate <= 0.75\nsquared_error = 0.167\nsamples

= 62\nvalue = [[0.113]\n[0.629]]"] ;

118 -> 176 ;

177 [label="Liquid Flow Rate <= 0.741\nsquared_error =

0.038\nsamples = 36\nvalue = [[0.083]\n[1.0]]"] ;

176 -> 177 ;

178 [label="Cloud Amount <= 8.384\nsquared_error = 0.027\nsamples =

35\nvalue = [[0.057]\n[1.0]]"] ;

177 -> 178 ;

179 [label="Air Temperature <= -2.083\nsquared_error =

0.015\nsamples = 33\nvalue = [[0.03]\n[1.0]]"] ;

178 -> 179 ;

180 [label="squared_error = 0.0\nsamples = 28\nvalue =

[[0.0]\n[1.0]]"] ;

179 -> 180 ;

181 [label="Air Temperature <= -1.887\nsquared_error = 0.08\nsamples

= 5\nvalue = [[0.2]\n[1.0]]"] ;

179 -> 181 ;

182 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

181 -> 182 ;

183 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

181 -> 183 ;

184 [label="Air Temperature <= -8.696\nsquared_error =

0.125\nsamples = 2\nvalue = [[0.5]\n[1.0]]"] ;

178 -> 184 ;

185 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

184 -> 185 ;

186 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

184 -> 186 ;

187 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

177 -> 187 ;

 121

188 [label="Wind Speed <= 7.688\nsquared_error = 0.116\nsamples =

26\nvalue = [[0.154]\n[0.115]]"] ;

176 -> 188 ;

189 [label="Delta T <= 5.833\nsquared_error = 0.078\nsamples =

23\nvalue = [[0.043]\n[0.13]]"] ;

188 -> 189 ;

190 [label="Cloud Amount <= 3.589\nsquared_error = 0.194\nsamples =

6\nvalue = [[0.167]\n[0.5]]"] ;

189 -> 190 ;

191 [label="Snow Depth <= 16.637\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.333]\n[0.0]]"] ;

190 -> 191 ;

192 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

191 -> 192 ;

193 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

191 -> 193 ;

194 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

190 -> 194 ;

195 [label="squared_error = 0.0\nsamples = 17\nvalue =

[[0.0]\n[0.0]]"] ;

189 -> 195 ;

196 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

188 -> 196 ;

197 [label="Delta T <= 10.357\nsquared_error = 0.08\nsamples =

600\nvalue = [[0.097]\n[0.078]]"] ;

117 -> 197 ;

198 [label="Liquid Flow Rate <= 0.598\nsquared_error =

0.158\nsamples = 147\nvalue = [[0.136]\n[0.272]]"] ;

197 -> 198 ;

199 [label="Wind Speed <= 7.821\nsquared_error = 0.159\nsamples =

48\nvalue = [[0.188]\n[0.792]]"] ;

198 -> 199 ;

200 [label="Liquid Flow Rate <= 0.536\nsquared_error =

0.134\nsamples = 42\nvalue = [[0.095]\n[0.762]]"] ;

199 -> 200 ;

201 [label="Air Temperature <= -0.643\nsquared_error =

0.081\nsamples = 28\nvalue = [[0.107]\n[0.929]]"] ;

200 -> 201 ;

202 [label="Delta T <= 9.702\nsquared_error = 0.041\nsamples =

22\nvalue = [[0.0]\n[0.909]]"] ;

201 -> 202 ;

203 [label="squared_error = 0.0\nsamples = 16\nvalue =

[[0.0]\n[1.0]]"] ;

202 -> 203 ;

204 [label="Liquid Flow Rate <= 0.476\nsquared_error =

0.111\nsamples = 6\nvalue = [[0.0]\n[0.667]]"] ;

202 -> 204 ;

205 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

204 -> 205 ;

206 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

204 -> 206 ;

207 [label="Wind Speed <= 3.911\nsquared_error = 0.125\nsamples =

6\nvalue = [[0.5]\n[1.0]]"] ;

201 -> 207 ;

208 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

207 -> 208 ;

 122

209 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[1.0]]"] ;

207 -> 209 ;

210 [label="Delta T <= 8.631\nsquared_error = 0.156\nsamples =

14\nvalue = [[0.071]\n[0.429]]"] ;

200 -> 210 ;

211 [label="Precipitation Intensity <= 4.857\nsquared_error =

0.061\nsamples = 7\nvalue = [[0.0]\n[0.857]]"] ;

210 -> 211 ;

212 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

211 -> 212 ;

213 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

211 -> 213 ;

214 [label="Air Temperature <= -0.446\nsquared_error =

0.061\nsamples = 7\nvalue = [[0.143]\n[0.0]]"] ;

210 -> 214 ;

215 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[0.0]]"] ;

214 -> 215 ;

216 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

214 -> 216 ;

217 [label="Cloud Amount <= 2.652\nsquared_error = 0.069\nsamples =

6\nvalue = [[0.833]\n[1.0]]"] ;

199 -> 217 ;

218 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

217 -> 218 ;

219 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[1.0]\n[1.0]]"] ;

217 -> 219 ;

220 [label="Wind Speed <= 7.018\nsquared_error = 0.059\nsamples =

99\nvalue = [[0.111]\n[0.02]]"] ;

198 -> 220 ;

221 [label="Air Temperature <= -0.25\nsquared_error = 0.013\nsamples

= 77\nvalue = [[0.026]\n[0.0]]"] ;

220 -> 221 ;

222 [label="squared_error = 0.0\nsamples = 69\nvalue =

[[0.0]\n[0.0]]"] ;

221 -> 222 ;

223 [label="Snow Depth <= 14.083\nsquared_error = 0.094\nsamples =

8\nvalue = [[0.25]\n[0.0]]"] ;

221 -> 223 ;

224 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[0.0]\n[0.0]]"] ;

223 -> 224 ;

225 [label="Wind Speed <= 2.411\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.667]\n[0.0]]"] ;

223 -> 225 ;

226 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

225 -> 226 ;

227 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

225 -> 227 ;

228 [label="Liquid Flow Rate <= 0.688\nsquared_error =

0.162\nsamples = 22\nvalue = [[0.409]\n[0.091]]"] ;

220 -> 228 ;

229 [label="Wind Speed <= 7.848\nsquared_error = 0.125\nsamples =

4\nvalue = [[0.0]\n[0.5]]"] ;

228 -> 229 ;

 123

230 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

229 -> 230 ;

231 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

229 -> 231 ;

232 [label="Precipitation Amount <= 0.643\nsquared_error =

0.125\nsamples = 18\nvalue = [[0.5]\n[0.0]]"] ;

228 -> 232 ;

233 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[0.0]]"] ;

232 -> 233 ;

234 [label="Delta T <= 9.464\nsquared_error = 0.115\nsamples =

14\nvalue = [[0.357]\n[0.0]]"] ;

232 -> 234 ;

235 [label="Air Temperature <= -6.47\nsquared_error = 0.094\nsamples

= 12\nvalue = [[0.25]\n[0.0]]"] ;

234 -> 235 ;

236 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[0.0]]"] ;

235 -> 236 ;

237 [label="Air Temperature <= -2.935\nsquared_error =

0.125\nsamples = 6\nvalue = [[0.5]\n[0.0]]"] ;

235 -> 237 ;

238 [label="Precipitation Intensity <= 4.661\nsquared_error =

0.094\nsamples = 4\nvalue = [[0.75]\n[0.0]]"] ;

237 -> 238 ;

239 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

238 -> 239 ;

240 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

238 -> 240 ;

241 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

237 -> 241 ;

242 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

234 -> 242 ;

243 [label="Wind Speed <= 8.679\nsquared_error = 0.046\nsamples =

453\nvalue = [[0.084]\n[0.015]]"] ;

197 -> 243 ;

244 [label="Precipitation Amount <= 0.036\nsquared_error =

0.036\nsamples = 436\nvalue = [[0.06]\n[0.016]]"] ;

243 -> 244 ;

245 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[0.0]]"] ;

244 -> 245 ;

246 [label="Wind Speed <= 7.286\nsquared_error = 0.032\nsamples =

432\nvalue = [[0.051]\n[0.016]]"] ;

244 -> 246 ;

247 [label="Air Temperature <= -0.119\nsquared_error = 0.02\nsamples

= 362\nvalue = [[0.025]\n[0.017]]"] ;

246 -> 247 ;

248 [label="Liquid Flow Rate <= 0.446\nsquared_error =

0.016\nsamples = 349\nvalue = [[0.014]\n[0.017]]"] ;

247 -> 248 ;

249 [label="Delta T <= 12.083\nsquared_error = 0.07\nsamples =

44\nvalue = [[0.023]\n[0.136]]"] ;

248 -> 249 ;

250 [label="Air Temperature <= -13.083\nsquared_error =

0.094\nsamples = 8\nvalue = [[0.0]\n[0.75]]"] ;

249 -> 250 ;

 124

251 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

250 -> 251 ;

252 [label="Cloud Amount <= 8.009\nsquared_error = 0.061\nsamples =

7\nvalue = [[0.0]\n[0.857]]"] ;

250 -> 252 ;

253 [label="squared_error = 0.0\nsamples = 6\nvalue =

[[0.0]\n[1.0]]"] ;

252 -> 253 ;

254 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

252 -> 254 ;

255 [label="Precipitation Intensity <= 5.875\nsquared_error =

0.014\nsamples = 36\nvalue = [[0.028]\n[0.0]]"] ;

249 -> 255 ;

256 [label="squared_error = 0.0\nsamples = 35\nvalue =

[[0.0]\n[0.0]]"] ;

255 -> 256 ;

257 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

255 -> 257 ;

258 [label="Air Temperature <= -1.036\nsquared_error =

0.006\nsamples = 305\nvalue = [[0.013]\n[0.0]]"] ;

248 -> 258 ;

259 [label="Liquid Flow Rate <= 0.452\nsquared_error =

0.002\nsamples = 283\nvalue = [[0.004]\n[0.0]]"] ;

258 -> 259 ;

260 [label="Wind Speed <= 6.08\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.333]\n[0.0]]"] ;

259 -> 260 ;

261 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

260 -> 261 ;

262 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

260 -> 262 ;

263 [label="squared_error = 0.0\nsamples = 280\nvalue =

[[0.0]\n[0.0]]"] ;

259 -> 263 ;

264 [label="Precipitation Intensity <= 0.929\nsquared_error =

0.059\nsamples = 22\nvalue = [[0.136]\n[0.0]]"] ;

258 -> 264 ;

265 [label="Wind Speed <= 3.402\nsquared_error = 0.12\nsamples =

5\nvalue = [[0.6]\n[0.0]]"] ;

264 -> 265 ;

266 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

265 -> 266 ;

267 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

265 -> 267 ;

268 [label="squared_error = 0.0\nsamples = 17\nvalue =

[[0.0]\n[0.0]]"] ;

264 -> 268 ;

269 [label="Liquid Flow Rate <= 0.568\nsquared_error =

0.107\nsamples = 13\nvalue = [[0.308]\n[0.0]]"] ;

247 -> 269 ;

270 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[0.0]]"] ;

269 -> 270 ;

271 [label="squared_error = 0.0\nsamples = 9\nvalue =

[[0.0]\n[0.0]]"] ;

269 -> 271 ;

 125

272 [label="Snow Depth <= 23.756\nsquared_error = 0.083\nsamples =

70\nvalue = [[0.186]\n[0.014]]"] ;

246 -> 272 ;

273 [label="Cloud Amount <= 8.411\nsquared_error = 0.071\nsamples =

67\nvalue = [[0.149]\n[0.015]]"] ;

272 -> 273 ;

274 [label="Precipitation Intensity <= 5.875\nsquared_error =

0.053\nsamples = 60\nvalue = [[0.1]\n[0.017]]"] ;

273 -> 274 ;

275 [label="Delta T <= 14.762\nsquared_error = 0.046\nsamples =

59\nvalue = [[0.102]\n[0.0]]"] ;

274 -> 275 ;

276 [label="Snow Depth <= 2.012\nsquared_error = 0.076\nsamples =

32\nvalue = [[0.188]\n[0.0]]"] ;

275 -> 276 ;

277 [label="Liquid Flow Rate <= 0.777\nsquared_error =

0.111\nsamples = 3\nvalue = [[0.667]\n[0.0]]"] ;

276 -> 277 ;

278 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

277 -> 278 ;

279 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

277 -> 279 ;

280 [label="Delta T <= 14.583\nsquared_error = 0.059\nsamples =

29\nvalue = [[0.138]\n[0.0]]"] ;

276 -> 280 ;

281 [label="Wind Speed <= 7.446\nsquared_error = 0.048\nsamples =

28\nvalue = [[0.107]\n[0.0]]"] ;

280 -> 281 ;

282 [label="Cloud Amount <= 5.491\nsquared_error = 0.12\nsamples =

5\nvalue = [[0.4]\n[0.0]]"] ;

281 -> 282 ;

283 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[0.0]]"] ;

282 -> 283 ;

284 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

282 -> 284 ;

285 [label="Wind Speed <= 8.304\nsquared_error = 0.021\nsamples =

23\nvalue = [[0.043]\n[0.0]]"] ;

281 -> 285 ;

286 [label="squared_error = 0.0\nsamples = 18\nvalue =

[[0.0]\n[0.0]]"] ;

285 -> 286 ;

287 [label="Wind Speed <= 8.357\nsquared_error = 0.08\nsamples =

5\nvalue = [[0.2]\n[0.0]]"] ;

285 -> 287 ;

288 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

287 -> 288 ;

289 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[0.0]]"] ;

287 -> 289 ;

290 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

280 -> 290 ;

291 [label="squared_error = 0.0\nsamples = 27\nvalue =

[[0.0]\n[0.0]]"] ;

275 -> 291 ;

292 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

274 -> 292 ;

 126

293 [label="Snow Depth <= 16.327\nsquared_error = 0.122\nsamples =

7\nvalue = [[0.571]\n[0.0]]"] ;

273 -> 293 ;

294 [label="Delta T <= 15.952\nsquared_error = 0.094\nsamples =

4\nvalue = [[0.25]\n[0.0]]"] ;

293 -> 294 ;

295 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[0.0]]"] ;

294 -> 295 ;

296 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

294 -> 296 ;

297 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

293 -> 297 ;

298 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

272 -> 298 ;

299 [label="Cloud Amount <= 5.116\nsquared_error = 0.104\nsamples =

17\nvalue = [[0.706]\n[0.0]]"] ;

243 -> 299 ;

300 [label="squared_error = 0.0\nsamples = 9\nvalue =

[[1.0]\n[0.0]]"] ;

299 -> 300 ;

301 [label="Snow Depth <= 5.417\nsquared_error = 0.117\nsamples =

8\nvalue = [[0.375]\n[0.0]]"] ;

299 -> 301 ;

302 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[0.0]]"] ;

301 -> 302 ;

303 [label="Liquid Flow Rate <= 0.792\nsquared_error =

0.094\nsamples = 4\nvalue = [[0.75]\n[0.0]]"] ;

301 -> 303 ;

304 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

303 -> 304 ;

305 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

303 -> 305 ;

306 [label="Delta T <= 6.429\nsquared_error = 0.138\nsamples =

842\nvalue = [[0.96]\n[0.613]]"] ;

0 -> 306 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;

307 [label="Air Temperature <= 0.667\nsquared_error = 0.032\nsamples

= 290\nvalue = [[0.959]\n[0.976]]"] ;

306 -> 307 ;

308 [label="Precipitation Amount <= 1.393\nsquared_error =

0.21\nsamples = 9\nvalue = [[0.444]\n[0.778]]"] ;

307 -> 308 ;

309 [label="Cloud Amount <= 2.759\nsquared_error = 0.12\nsamples =

5\nvalue = [[0.0]\n[0.6]]"] ;

308 -> 309 ;

310 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

309 -> 310 ;

311 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[1.0]]"] ;

309 -> 311 ;

312 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[1.0]]"] ;

308 -> 312 ;

313 [label="Precipitation Amount <= 0.446\nsquared_error =

0.021\nsamples = 281\nvalue = [[0.975]\n[0.982]]"] ;

307 -> 313 ;

 127

314 [label="Air Temperature <= 1.845\nsquared_error = 0.086\nsamples

= 41\nvalue = [[0.854]\n[0.951]]"] ;

313 -> 314 ;

315 [label="Precipitation Amount <= 0.286\nsquared_error =

0.123\nsamples = 9\nvalue = [[0.444]\n[1.0]]"] ;

314 -> 315 ;

316 [label="Wind Speed <= 0.696\nsquared_error = 0.08\nsamples =

5\nvalue = [[0.8]\n[1.0]]"] ;

315 -> 316 ;

317 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

316 -> 317 ;

318 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[1.0]]"] ;

316 -> 318 ;

319 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

315 -> 319 ;

320 [label="Wind Speed <= 0.268\nsquared_error = 0.044\nsamples =

32\nvalue = [[0.969]\n[0.938]]"] ;

314 -> 320 ;

321 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

320 -> 321 ;

322 [label="Delta T <= 5.774\nsquared_error = 0.03\nsamples =

31\nvalue = [[1.0]\n[0.935]]"] ;

320 -> 322 ;

323 [label="Liquid Flow Rate <= 0.946\nsquared_error =

0.016\nsamples = 30\nvalue = [[1.0]\n[0.967]]"] ;

322 -> 323 ;

324 [label="squared_error = 0.0\nsamples = 29\nvalue =

[[1.0]\n[1.0]]"] ;

323 -> 324 ;

325 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

323 -> 325 ;

326 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

322 -> 326 ;

327 [label="Precipitation Intensity <= 0.089\nsquared_error =

0.008\nsamples = 240\nvalue = [[0.996]\n[0.988]]"] ;

313 -> 327 ;

328 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

327 -> 328 ;

329 [label="Delta T <= 5.714\nsquared_error = 0.006\nsamples =

239\nvalue = [[1.0]\n[0.987]]"] ;

327 -> 329 ;

330 [label="squared_error = 0.0\nsamples = 215\nvalue =

[[1.0]\n[1.0]]"] ;

329 -> 330 ;

331 [label="Liquid Flow Rate <= 0.759\nsquared_error =

0.055\nsamples = 24\nvalue = [[1.0]\n[0.875]]"] ;

329 -> 331 ;

332 [label="squared_error = 0.0\nsamples = 20\nvalue =

[[1.0]\n[1.0]]"] ;

331 -> 332 ;

333 [label="Snow Depth <= 19.268\nsquared_error = 0.094\nsamples =

4\nvalue = [[1.0]\n[0.25]]"] ;

331 -> 333 ;

334 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

333 -> 334 ;

 128

335 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

333 -> 335 ;

336 [label="Liquid Flow Rate <= 0.399\nsquared_error =

0.141\nsamples = 552\nvalue = [[0.96]\n[0.422]]"] ;

306 -> 336 ;

337 [label="Liquid Flow Rate <= 0.283\nsquared_error =

0.065\nsamples = 231\nvalue = [[0.97]\n[0.887]]"] ;

336 -> 337 ;

338 [label="Air Temperature <= 0.798\nsquared_error = 0.02\nsamples

= 166\nvalue = [[0.964]\n[0.994]]"] ;

337 -> 338 ;

339 [label="Precipitation Amount <= 1.054\nsquared_error =

0.125\nsamples = 8\nvalue = [[0.5]\n[1.0]]"] ;

338 -> 339 ;

340 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[1.0]]"] ;

339 -> 340 ;

341 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[1.0]]"] ;

339 -> 341 ;

342 [label="Precipitation Amount <= 0.054\nsquared_error =

0.009\nsamples = 158\nvalue = [[0.987]\n[0.994]]"] ;

338 -> 342 ;

343 [label="Air Temperature <= 1.649\nsquared_error = 0.125\nsamples

= 2\nvalue = [[0.5]\n[1.0]]"] ;

342 -> 343 ;

344 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

343 -> 344 ;

345 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

343 -> 345 ;

346 [label="Liquid Flow Rate <= 0.262\nsquared_error =

0.006\nsamples = 156\nvalue = [[0.994]\n[0.994]]"] ;

342 -> 346 ;

347 [label="Wind Speed <= 0.429\nsquared_error = 0.003\nsamples =

150\nvalue = [[0.993]\n[1.0]]"] ;

346 -> 347 ;

348 [label="Precipitation Amount <= 0.527\nsquared_error =

0.069\nsamples = 6\nvalue = [[0.833]\n[1.0]]"] ;

347 -> 348 ;

349 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

348 -> 349 ;

350 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[1.0]\n[1.0]]"] ;

348 -> 350 ;

351 [label="squared_error = 0.0\nsamples = 144\nvalue =

[[1.0]\n[1.0]]"] ;

347 -> 351 ;

352 [label="Delta T <= 17.143\nsquared_error = 0.069\nsamples =

6\nvalue = [[1.0]\n[0.833]]"] ;

346 -> 352 ;

353 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[1.0]\n[1.0]]"] ;

352 -> 353 ;

354 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

352 -> 354 ;

355 [label="Delta T <= 15.179\nsquared_error = 0.126\nsamples =

65\nvalue = [[0.985]\n[0.615]]"] ;

337 -> 355 ;

 129

356 [label="Air Temperature <= 7.738\nsquared_error = 0.024\nsamples

= 41\nvalue = [[0.976]\n[0.976]]"] ;

355 -> 356 ;

357 [label="Delta T <= 13.988\nsquared_error = 0.012\nsamples =

40\nvalue = [[1.0]\n[0.975]]"] ;

356 -> 357 ;

358 [label="squared_error = 0.0\nsamples = 37\nvalue =

[[1.0]\n[1.0]]"] ;

357 -> 358 ;

359 [label="Air Temperature <= 6.232\nsquared_error = 0.111\nsamples

= 3\nvalue = [[1.0]\n[0.667]]"] ;

357 -> 359 ;

360 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

359 -> 360 ;

361 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

359 -> 361 ;

362 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

356 -> 362 ;

363 [label="squared_error = 0.0\nsamples = 24\nvalue =

[[1.0]\n[0.0]]"] ;

355 -> 363 ;

364 [label="Delta T <= 10.0\nsquared_error = 0.062\nsamples =

321\nvalue = [[0.953]\n[0.087]]"] ;

336 -> 364 ;

365 [label="Liquid Flow Rate <= 0.604\nsquared_error =

0.132\nsamples = 87\nvalue = [[0.943]\n[0.299]]"] ;

364 -> 365 ;

366 [label="Liquid Flow Rate <= 0.589\nsquared_error =

0.106\nsamples = 29\nvalue = [[0.897]\n[0.862]]"] ;

365 -> 366 ;

367 [label="Liquid Flow Rate <= 0.423\nsquared_error =

0.042\nsamples = 23\nvalue = [[0.957]\n[0.957]]"] ;

366 -> 367 ;

368 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[1.0]]"] ;

367 -> 368 ;

369 [label="Cloud Amount <= 8.491\nsquared_error = 0.022\nsamples =

22\nvalue = [[1.0]\n[0.955]]"] ;

367 -> 369 ;

370 [label="squared_error = 0.0\nsamples = 19\nvalue =

[[1.0]\n[1.0]]"] ;

369 -> 370 ;

371 [label="Delta T <= 9.226\nsquared_error = 0.111\nsamples =

3\nvalue = [[1.0]\n[0.667]]"] ;

369 -> 371 ;

372 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

371 -> 372 ;

373 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

371 -> 373 ;

374 [label="Delta T <= 8.214\nsquared_error = 0.236\nsamples =

6\nvalue = [[0.667]\n[0.5]]"] ;

366 -> 374 ;

375 [label="Air Temperature <= 3.679\nsquared_error = 0.111\nsamples

= 3\nvalue = [[0.333]\n[1.0]]"] ;

374 -> 375 ;

376 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[1.0]]"] ;

375 -> 376 ;

 130

377 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

375 -> 377 ;

378 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

374 -> 378 ;

379 [label="Wind Speed <= 0.482\nsquared_error = 0.025\nsamples =

58\nvalue = [[0.966]\n[0.017]]"] ;

365 -> 379 ;

380 [label="Delta T <= 7.917\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.333]\n[0.0]]"] ;

379 -> 380 ;

381 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

380 -> 381 ;

382 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[0.0]\n[0.0]]"] ;

380 -> 382 ;

383 [label="Air Temperature <= 7.476\nsquared_error = 0.009\nsamples

= 55\nvalue = [[1.0]\n[0.018]]"] ;

379 -> 383 ;

384 [label="squared_error = 0.0\nsamples = 49\nvalue =

[[1.0]\n[0.0]]"] ;

383 -> 384 ;

385 [label="Air Temperature <= 7.673\nsquared_error = 0.069\nsamples

= 6\nvalue = [[1.0]\n[0.167]]"] ;

383 -> 385 ;

386 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[1.0]]"] ;

385 -> 386 ;

387 [label="squared_error = 0.0\nsamples = 5\nvalue =

[[1.0]\n[0.0]]"] ;

385 -> 387 ;

388 [label="Wind Speed <= 1.875\nsquared_error = 0.025\nsamples =

234\nvalue = [[0.957]\n[0.009]]"] ;

364 -> 388 ;

389 [label="Precipitation Amount <= 0.33\nsquared_error =

0.079\nsamples = 41\nvalue = [[0.805]\n[0.0]]"] ;

388 -> 389 ;

390 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[0.0]\n[0.0]]"] ;

389 -> 390 ;

391 [label="Air Temperature <= 1.583\nsquared_error = 0.048\nsamples

= 37\nvalue = [[0.892]\n[0.0]]"] ;

389 -> 391 ;

392 [label="Snow Depth <= 19.577\nsquared_error = 0.125\nsamples =

6\nvalue = [[0.5]\n[0.0]]"] ;

391 -> 392 ;

393 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[1.0]\n[0.0]]"] ;

392 -> 393 ;

394 [label="squared_error = 0.0\nsamples = 3\nvalue =

[[0.0]\n[0.0]]"] ;

392 -> 394 ;

395 [label="Precipitation Amount <= 0.384\nsquared_error =

0.016\nsamples = 31\nvalue = [[0.968]\n[0.0]]"] ;

391 -> 395 ;

396 [label="Air Temperature <= 3.679\nsquared_error = 0.125\nsamples

= 2\nvalue = [[0.5]\n[0.0]]"] ;

395 -> 396 ;

397 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[1.0]\n[0.0]]"] ;

396 -> 397 ;

 131

398 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

396 -> 398 ;

399 [label="squared_error = 0.0\nsamples = 29\nvalue =

[[1.0]\n[0.0]]"] ;

395 -> 399 ;

400 [label="Air Temperature <= 0.405\nsquared_error = 0.01\nsamples

= 193\nvalue = [[0.99]\n[0.01]]"] ;

388 -> 400 ;

401 [label="Wind Speed <= 7.58\nsquared_error = 0.111\nsamples =

3\nvalue = [[0.667]\n[0.0]]"] ;

400 -> 401 ;

402 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[0.0]]"] ;

401 -> 402 ;

403 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

401 -> 403 ;

404 [label="Liquid Flow Rate <= 0.452\nsquared_error =

0.008\nsamples = 190\nvalue = [[0.995]\n[0.011]]"] ;

400 -> 404 ;

405 [label="Liquid Flow Rate <= 0.443\nsquared_error =

0.065\nsamples = 13\nvalue = [[1.0]\n[0.154]]"] ;

404 -> 405 ;

406 [label="squared_error = 0.0\nsamples = 11\nvalue =

[[1.0]\n[0.0]]"] ;

405 -> 406 ;

407 [label="squared_error = 0.0\nsamples = 2\nvalue =

[[1.0]\n[1.0]]"] ;

405 -> 407 ;

408 [label="Cloud Amount <= 0.321\nsquared_error = 0.003\nsamples =

177\nvalue = [[0.994]\n[0.0]]"] ;

404 -> 408 ;

409 [label="Precipitation Intensity <= 1.25\nsquared_error =

0.08\nsamples = 5\nvalue = [[0.8]\n[0.0]]"] ;

408 -> 409 ;

410 [label="squared_error = 0.0\nsamples = 1\nvalue =

[[0.0]\n[0.0]]"] ;

409 -> 410 ;

411 [label="squared_error = 0.0\nsamples = 4\nvalue =

[[1.0]\n[0.0]]"] ;

409 -> 411 ;

412 [label="squared_error = 0.0\nsamples = 172\nvalue =

[[1.0]\n[0.0]]"] ;

408 -> 412 ;

}

 132

7.6 Appendix E – Python Code: 𝑳𝑯𝑺_𝑳𝒐𝒐𝒑. 𝒑𝒚

{Set Timer}

from timeit import default_timer as timer

start = timer()

{Loop For N number of weeks}

i=0

while i<3000: #Choose value for N number of weeks

 # {Import Necessary Modules}

 import numpy as np

 import matplotlib.pyplot as plt

 import pandas as pd

 from smt.sampling_methods import LHS

 from numpy import savetxt

 # {Read CSV File and Select Variables Which Will be Used}

 df2 = pd.read_csv('Weather_Data_(Not_Formatted).csv')

 maxv = df2['Year']

 maxv2 = df2['Month']

 maxv3 = df2['Day']

 maxv4 = df2['Time']

 maxv5 = df2['CloudAmount']

 maxv6 = df2['PrecipitationAmount']

 maxv7 = df2['PrecipitationIntensity']

 maxv8 = df2['SnowDepth']

 maxv9 = df2['AirTemperature']

 maxv10 = df2['WindSpeed']

 # {Identify Boundaries}

 maxv5max = maxv5.max() # {Cloud amount (1/8)}

 maxv5min = maxv5.min()

 maxv6max = maxv6.max() # {Precipitation amount (mm)}

 maxv6min = maxv6.min()

 maxv7max = maxv7.max() # {Precipitation intensity

(mm/h)}

 maxv7min = maxv7.min()

 maxv8max = maxv8.max() # {Snow depth (cm)}

 maxv8min = maxv8.min()

 maxv9max = maxv9.max() # {Air temperature (degC)}

 maxv9min = maxv9.min()

 maxv10max = maxv10.max() # {Wind speed (m/s)}

 maxv10min = maxv10.min()

 maxv11max = 20 # {DeltaT (C)}

 maxv11min = 0

 maxv12max = 1 # {Liquid Flow Rate (l/s)}

 maxv12min = 0.01

 # {Setting Limits on Random Number Generation}

 xlimits = np.array([[int(maxv5min), int(maxv5max)],

[int(maxv6min), int(maxv6max)], [int(maxv7min), int(maxv7max)],

 [int(maxv8min), int(maxv8max)],

[int(maxv9min), int(maxv9max)], [int(maxv10min), int(maxv10max)],

 [int(maxv11min), int(maxv11max)],

[int(maxv12min), int(maxv12max)]])

 # {Running Latin Hyper Cube Sampling (LHS)}

 rng = np.random.RandomState(None)

 sampling = LHS(xlimits=xlimits, criterion = 'c',

random_state=rng)

 num = 168

 xnew = sampling(num)

 133

 # {Save Outputs}

 savetxt('Intermediate1.csv', xnew, fmt ='%f', delimiter=',',

header= "Cloud Amount (1/8), Precipitation Amount (mm),

Precipitation Intensity (mm/h), Snow Depth (cm), Air Temperature

(degC), Wind Speed (m/s), DeltaT (C), LiquidFlowRate (l/s)")

 # {Convert Output to DataFrame}

 amd = pd.read_csv('Intermediate1.csv')

 print(amd)

 amd["Year"] = pd.to_numeric(df2["Year"],errors='coerce')

 amd["Month"] = pd.to_numeric(df2["Month"],errors='coerce')

 amd["Day"] = pd.to_numeric(df2["Day"],errors='coerce')

 amd["Time"] = pd.to_numeric(df2["Time"],errors='coerce')

 amd["Cloud Amount"] = pd.to_numeric(amd['# Cloud Amount

(1/8)'],errors='coerce')

 amd["Precipitation Amount"] = pd.to_numeric(amd[' Precipitation

Amount (mm)'],errors='coerce')

 amd["Precipitation Intensity"] = pd.to_numeric(amd['

Precipitation Intensity (mm/h)'],errors='coerce')

 amd["Snow Depth"] = pd.to_numeric(amd[' Snow Depth

(cm)'],errors='coerce')

 amd["Air Temperature"] = pd.to_numeric(amd[' Air Temperature

(degC)'],errors='coerce')

 amd["Wind Speed"] = pd.to_numeric(amd[' Wind Speed

(m/s)'],errors='coerce')

 amd["Delta T"] = pd.to_numeric(amd[' DeltaT

(C)'],errors='coerce')

 amd["Liquid Flow Rate"] = pd.to_numeric(amd[' LiquidFlowRate

(l/s)'],errors='coerce')

 # {Correct Generated Parameters Based on Unrealsitic Weather

Scenarios}

 amd["Precipitation Amount"] = np.where(amd["Precipitation

Intensity"] >= (amd["Precipitation Amount"]+2.9), amd["Precipitation

Intensity"], amd["Precipitation Amount"])

 amd["Precipitation Amount"] = np.where(amd["Precipitation

Intensity"] == 0, amd["Precipitation Intensity"], amd["Precipitation

Amount"])

 amd["Precipitation Intensity"] = np.where(amd["Precipitation

Amount"] == 0, amd["Precipitation Amount"], amd["Precipitation

Intensity"])

 amd["Precipitation Amount"] = np.where(amd["Cloud Amount"] == 0,

0, amd["Precipitation Amount"])

 amd["Precipitation Intensity"] = np.where(amd["Cloud Amount"] ==

0, 0, amd["Precipitation Intensity"])

 # {Set All Weather Parameters to Constant Values and Use Linear

Interpolation For Control Inputs}

 amd["Cloud Amount"] = np.where(amd["Cloud Amount"] !=

amd.iloc[0,0], amd.iloc[0,0], amd.iloc[0,0])

 amd["Precipitation Amount"] = np.where(amd["Precipitation

Amount"] != amd.iloc[0,1], amd.iloc[0,1], amd.iloc[0,1])

 amd["Precipitation Intensity"] = np.where(amd["Precipitation

Intensity"] != amd.iloc[0,2], amd.iloc[0,2], amd.iloc[0,2])

 amd["Snow Depth"] = np.where(amd["Snow Depth"] != amd.iloc[0,3],

amd.iloc[0,3], amd.iloc[0,3])

 amd["Air Temperature"] = np.where(amd["Air Temperature"] !=

amd.iloc[0,4], amd.iloc[0,4], amd.iloc[0,4])

 amd["Wind Speed"] = np.where(amd["Wind Speed"] != amd.iloc[0,5],

amd.iloc[0,5], amd.iloc[0,5])

 amd["Delta T"] = np.where(amd["Delta T"] != amd.iloc[0,6],

amd.iloc[0,6], amd.iloc[0,6])

 134

 amd["Liquid Flow Rate"] = np.where(amd["Liquid Flow Rate"] !=

amd.iloc[0,7], amd.iloc[0,7], amd.iloc[0,7])

 # {When Snow Depth is Increasing then Delta T and Liquid Flow

Rate Will Also Increase}

 if amd.iloc[0,3] < amd.iloc[167,3] and amd.iloc[0,6] >

amd.iloc[167,6]:

 amd["Delta T"] = amd["Delta T"].values[::-1]

 if amd.iloc[0,3] < amd.iloc[167,3] and amd.iloc[0,7] >

amd.iloc[167,7]:

 amd["Liquid Flow Rate"] = amd["Liquid Flow Rate"].values[::-

1]

 # {Save Final Results to CSV file}

 LHSresults = amd.to_csv('LHS_Results.csv', sep = ',', columns=

["Year", "Month", "Day", "Time", "Cloud Amount", "Precipitation

Amount", "Precipitation Intensity",

 "Snow

Depth", "Air Temperature", "Wind Speed", "Delta T", "Liquid Flow

Rate"])

 # {Formatting CSV to 1 Column}

 import csv

 # Read the original CSV file with 10 columns

 input_filename = 'LHS_Results.csv' # Replace with your file

name

 output_filename = 'LHS_Results_Formatted.csv' # Name for the

new CSV file

 with open(input_filename, 'r', newline='') as input_file:

 csv_reader = csv.reader(input_file)

 data = list(csv_reader) # Read all rows

 # Concatenate values from each row into a single column

 single_column_data = []

 for row in data:

 concatenated_row = ';'.join(row) # Join values in a row

with a comma

 single_column_data.append(concatenated_row)

 # Write the single-column data to a new CSV file

 with open(output_filename, 'w', newline='') as output_file:

 csv_writer = csv.writer(output_file)

 for item in single_column_data:

 csv_writer.writerow([item])

|

|

Code-Explicit.py

|

|

 import csv

 # Define the path for the input CSV file

 input_file = 'LHS_Results.csv'

 # Define the path for the output CSV file

 output_file = 'Intermediate2.csv'

 # Function to add a column to the CSV

 def add_column_to_csv(input_file, output_file,

new_column_header, new_column_data):

 with open(input_file, 'r') as file:

 # Read the existing CSV file

 135

 reader = csv.reader(file)

 data = list(reader)

 # Add the new column header to the first row

 data[0].append(new_column_header)

 # Add data to the new column

 for i in range(1, len(data)): # Start from 1 to skip

the header row

 data[i].append(new_column_data[i - 1]) # Adjust

index to match data

 with open(output_file, 'w', newline='') as file:

 # Write the modified data to a new CSV file

 writer = csv.writer(file)

 writer.writerows(data)

 add_column_to_csv(input_file, output_file, 'FinalSnowDepth',

D_snow)

 # Define the path for the input CSV file

 input_file = 'Intermediate2.csv'

 # Define the path for the output CSV file

 output_file = 'Intermediate3.csv'

 # Function to add a column to the CSV

 def add_column_to_csv(input_file, output_file,

new_column_header, new_column_data):

 with open(input_file, 'r') as file:

 # Read the existing CSV file

 reader = csv.reader(file)

 data = list(reader)

 # Add the new column header to the first row

 data[0].append(new_column_header)

 # Add data to the new column

 for i in range(1, len(data)): # Start from 1 to skip

the header row

 data[i].append(new_column_data[i - 1]) # Adjust

index to match data

 with open(output_file, 'w', newline='') as file:

 # Write the modified data to a new CSV file

 writer = csv.writer(file)

 writer.writerows(data)

 add_column_to_csv(input_file, output_file, 'EnergyConsumption',

energyConsumption)

 df = pd.read_csv('Intermediate3.csv')

 import numpy

 last_line = df.take([166])

 dcdata= pd.DataFrame(last_line)

 dcdata.to_csv('Decision_Tree_Inputs_3000.csv', mode='a',

index=False, header=False)

 i=i+1

end = timer()

print('Runtime [sec]: ')

print(end - start)

 136

7.7 Appendix F – Python Code:

𝑭𝒖𝒍𝒍_𝑺𝒄𝒂𝒍𝒆_𝑵𝒆𝒕𝒘𝒐𝒓𝒌. 𝒑𝒚
{Time Delay Simulation}

{Import Necessary Modules}

import pandapipes as pp

import pandapipes.properties.fluids as plg

import numpy as np

import pandas as pd

import pandapower.control as control

from pandapower.timeseries import DFData

from pandapower.timeseries import OutputWriter

from pandapipes.timeseries import run_timeseries

import itertools

from itertools import product

import csv

{Create an empty network}

net = pp.create_empty_network(fluid = "water") # Test the system

with water, then correct fluid properties can be added.

{Changing FLuid Properties to Create an Incompressible Fluid}

{Creating Properties}

density_constant = plg.FluidPropertyConstant(1025) #

kg/m3 - 38% 1,2-Propylenglycol C3H6(OH)2 at 40C, see

https://detector-cooling.web.cern.ch/data/Table%208-3-1.htm

viscosity_constant = plg.FluidPropertyConstant(0.00226) #

Value taken from CERN for 38% solution (https://detector-

cooling.web.cern.ch/data/Table%208-3-1.htm)

heat_capacity_constant = plg.FluidPropertyConstant(3820) #

Value taken from CERN for 38% solution (https://detector-

cooling.web.cern.ch/data/Table%208-3-1.htm)

{Adding Properties to the Existing Fluid}

water_const = plg.Fluid("water_const", "liquid")

water_const.add_property(property_name = "density", prop =

density_constant, overwrite=True)

water_const.add_property(property_name = "viscosity", prop =

viscosity_constant, overwrite=True)

water_const.add_property(property_name = "heat_capacity", prop =

heat_capacity_constant, overwrite=True)

{Add New Fluid to Net}

plg._add_fluid_to_net(net, water_const)

{Create Elements: junctions, external grid connection, pipes,

valves, sources, heat exchangers and sinks}

{Junctions}

inlet = pp.create_junctions(net, nr_junctions=200, pn_bar=1,

tfluid_k=275, geodata=list(itertools.product(range(0,1),

range(0,200))))

outlet = pp.create_junctions(net, nr_junctions=200, pn_bar=1,

tfluid_k=275, geodata=list(itertools.product(range(100,101),

range(200,0,-1))))

{Pipes}

{Inlet Side}

pipes_inlet = pp.create_pipes_from_parameters(net,

from_junctions=np.arange(0,199), to_junctions=np.arange(1,200),

length_km=4.658e-4, diameter_m=0.159, k_mm=0.0035, sections=5,

alpha_w_per_m2k=10, text_k=274)

{Loops}

 137

loops = pp.create_pipes_from_parameters(net,

from_junctions=np.arange(1,200), to_junctions=np.arange(398,199,-1),

length_km=0.142, diameter_m=0.022, k_mm=0.0035,

loss_coefficient=0.23, sections=5, alpha_w_per_m2k=10, text_k=274)

{Outlet Side}

pipes_outlet = pp.create_pipes_from_parameters(net,

from_junctions=np.arange(200,399), to_junctions=np.arange(201,400),

length_km=4.658e-4, diameter_m=0.159, k_mm=0.0035, sections=5,

alpha_w_per_m2k=10, text_k=274)

results = []

time = []

tstep = 0

while tstep < 8:

{Pump}

 pp.create_circ_pump_const_mass_flow(net, return_junction=399,

flow_junction=0, p_flow_bar=3.6, mdot_flow_kg_per_s=1, t_flow_k=289)

{Run Simulation}

 pp.pipeflow(net, stop_condition="tol", iter=10,

ambient_temperature = 274, friction_model="colebrook", mode="all",

transient=False, nonlinear_method="automatic", tol_p=1e-4, tol_v=1e-

4)

{Displaying Results for Different Components}

 print(' ')

 print('Time:', tstep, 'Hours')

 #print(net.res_junction)

 res= pd.DataFrame(data=net.res_junction)

 p_bar = res['p_bar']

 t_k = res['t_k']

{Record Results over Loop Iterations}

 results.append(p_bar)

 results.append(t_k)

 #results.append(res['p_bar'].iloc[399])

{Setting up Time-Step Calculations}

 time_steps = pd.timedelta_range(0, periods=8, freq='H') #

Select Number of Time Steps

{Collecting Outputs from Time-Step Calculations}

 log_variables = [('res_junction', 'p_bar'), ('res_junction',

't_k')]

 ow = OutputWriter(net, time_steps, output_path=None,

log_variables=log_variables)

 run_timeseries(net, time_steps)

 time.append(tstep)

 tstep = tstep + 1

{Create Data Frame from Results}

results= np.transpose(results)

P_T = pd.DataFrame(results)

P_T = P_T.transpose()

1) {Plot of the Pipe Network}

import pandapipes.plotting as plot

plot.simple_plot(net, pipe_width=1.0, junction_size=0.5,

pump_size=0.7)

2a) {Interception between horizontal line y=280.15 and Junction

399 to detrmine time needed for main 'code'.}

 138

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def displayPoint(self, p):

 f"({p.x}, {p.y})"

 print(f"({p.x}, {p.y})")

def lineLineIntersection(A, B, C, D):

 # {Line AB represented as a1x + b1y = c1}

 a1 = B.y - A.y

 b1 = A.x - B.x

 c1 = a1*(A.x) + b1*(A.y)

 # {Line CD represented as a2x + b2y = c2}

 a2 = D.y - C.y

 b2 = C.x - D.x

 c2 = a2*(C.x) + b2*(C.y)

 determinant = a1*b2 - a2*b1

 x = (b2*c1 - b1*c2)/determinant

 y = (a1*c2 - a2*c1)/determinant

 return Point(x, y)

{Inputs}:

A = Point(time[0], 280.15) # Horizontal line at temp=280.15K

B = Point(time[-1], 280.15) # Horizontal line at temp=280.15K

C = Point(time[-2], P_T['t_k'].iloc[200, -2]) # Taken from last

junction and outputs at second last time step

D = Point(time[-1], P_T['t_k'].iloc[200, -1]) # Taken from last

junction and outputs at last time step

{Outputs}:

intersection = lineLineIntersection(A, B, C, D)

print("The intersection of the given lines" + "is: ")

intersection.displayPoint(intersection)

xx = intersection.x # x coordinate from output

print('')

print('Time When Last Junction Reaches Required Temperature:',

round(xx, 2), '[Hours]')

2b) Plot of Temperature Variation Over Time at Last Junction

import matplotlib.pyplot as plt

timesteps = time_steps

x = time_steps

y399 = P_T['t_k'].iloc[200] # Choosing Junction To Plot

fig = plt.figure(figsize = (8,8))

plt.xlabel("Time Steps [Hours]")

plt.ylabel("Temperature [K]")

plt.title("Temperature Variation Over Time at Exit Junction")

from matplotlib.ticker import StrMethodFormatter

plt.gca().yaxis.set_major_formatter(StrMethodFormatter('{x:,.0f}'))

No decimal places

plt.gca().yaxis.set_major_formatter(StrMethodFormatter('{x:,.2f}'))

2 decimal places

plt.plot((x/3.6e+12), y399, "-o", color='deeppink')

plt.axhline(y = 280.15, color = 'grey', linestyle = '--') # y=7

degree C

plt.axvline(x = xx, color = 'grey', label = 'axvline - full height',

linestyle = '--')

plt.legend(['Exit Junction'], bbox_to_anchor=(1.05, 1.0), loc='upper

left', prop = { "size": 10 })

plt.grid(which='major', color='#DDDDDD', linewidth=0.8)

plt.grid(which='minor', color='#EEEEEE', linestyle=':',

linewidth=0.5)

plt.minorticks_on()

 139

7.8 Appendix G – Python Code: Original
TURFHEAT - v/1.0 #

(C) 2023 COMPUTATIONAL ENGINEERING AND ANALYSIS RESEARCH GROUP #

TURKU UNIVERSITY OF APPLIED SCIENCES, FINLAND #

-- #

Use this file to input variable values for calculation #

-- #

#[MAIN DIMENSIONS]

BottomSectionThickness = 0.06 # meters -> heating is at the middle

of this section, at 19 cm depth

MidSectionThickness = 0.105 # meters

SurfaceSectionThickness = 0.055 # meters

BedTotalDepth = 2 # meters, bottom level of blast furnace + clay

layer

FieldWidth = 71 # meters, per Google Maps

FieldLength = 107 # meters, per Google Maps

#[3-LAYER (TOP, MID, BOTTOM) TURF FIELD MATERIAL PROPERTIES]

ThermalElementVoidFraction = 0.2618 # the percentage of thermal

cables relative to total volume of the bottom section (ratio of

cross section areas); the remaining (1-ThermalElementVoidFraction)

is filled with gravel

GravelSectionDensity = 1690 # kg/m3

https://en.wikipedia.org/wiki/Gravel#:~:text=The%20bulk%20density%20

of%20gravel,3%2C240%20lb%2Fcu%20yd).

GravelThermalConductivity = 0.36 # W/m/K, "Gravel"

https://help.iesve.com/ve2021/table_6_thermal_conductivity__specific

_heat_capacity_and_density.htm

GravelSectionCp = 840 # J/kg/K

https://help.iesve.com/ve2021/table_6_thermal_conductivity__specific

_heat_capacity_and_density.htm

TurfSectionDensity = 1034.3 # kg/m3 - assumption based on plastics

https://omnexus.specialchem.com/polymer-

properties/properties/density

TurfSectionCp = 1289.2 # J/kg/K, estimate (foam plastic)

https://www.engineeringtoolbox.com/specific-heat-solids-d_154.html

TurfSectionThermalConductivity = 0.4548 # W/m/K, estimate

https://ctherm.com/resources/newsroom/blog/the-thermal-conductivity-

of-unfilled-plastics/

TurfSurfaceEmissivity = 0.6 # Winter Football: "The emissivity of

the surface, which in this case is the artificial pitch made out of

polyethylene has an emissivity of 0.92

BlastFurnaceSlagDensity = 1500

BlastFurnaceSlagThermalConductivity = 0.35

BlastFurnaceSlagCp = 840 # same as gravel --- no better info!

#[HEATING FLUID PARAMETERS]

LiquidDensity = 1025 # kg/m3 - 38% 1,2-Propylenglycol C3H6(OH)2 at

40C, see https://detector-cooling.web.cern.ch/data/Table%208-3-1.htm

LiquidThermalConductivity = 0.433 # W/m/K - 38% 1,2-Propylenglycol

C3H6(OH)2 at 40 degrees centigrade; https://detector-

cooling.web.cern.ch/data/Table%208-3-1.htm

LiquidCp = 3820 # J/kg/K , ibid

#[SNOW MATERIAL PROPERTIES]

EmpiricalGroundDampingFactor = -3.5 # 1/m, "f" value between -2 ...

-7, see Rankinen, K., Karvonen, T., & Butterfield, D. (2004). A

simple model for predicting soil temperature in snow-covered and

seasonally frozen soil: model description and testing. Hydrology and

Earth System Sciences, 8(4), 706-716.

SnowThermalConductivity = 0.2 # W/m/K, Snow thermal conductivity

ranges from 0.024 (kair) to 0.8

 140

SnowSurfaceEmissivity = 0.3 #

https://www.tandfonline.com/doi/abs/10.1080/01431169308904420 : 0.7

... 0.92

SnowDensity = 150 # kg/m3 # Utah Energy Balance model default,

should be > 150 kg/m3, see Liu, Y., et al. (2019). Exploration of

the Snow Ablation Process in the Semiarid ... Water, 11(5), 1058.

IceDensity = 917 # kg/m3 # Geotop,

http://eprints.biblio.unitn.it/551/1/geotop.pdf, p. 59

SnowSpecificHeatCapacity = 2090 # J/kg/K

https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html

WaterDensity = 1000 # kg/m3

WaterHeatOfFusion = 333.5 # kJ/kg -- energy required to melt snow,

h_f parameter in Utah Energy Balance Model

WaterSpecificHeatCapacity = 4184 # J/kg/K

SnowSaturatedHydraulicConductivity = 0.0069444 # m/s, Reference 25

m/h is 0.0069444, see Table 3 in Liu, Y., et al. (2019). Exploration

of the Snow Ablation Process in the Semiarid ... Water, 11(5), 1058.

SnowLiquidHoldingCapacity = 0.4 # Utah Energy Balance model default

0.05, see Table 3 in Liu, Y., et al. (2019). Exploration of the Snow

Ablation Process in the Semiarid ... Water, 11(5), 1058.

#[INITIAL VALUES]

FieldBottomTemperature = 0 # C, soil average temperature at 17 cm

depth, at the start of simulations

FieldMidpointTemperature = 0 # C, soil average temperature at 7 cm

depth, at the start of simulations

FieldSurfaceTemperature = 0 # C, turf surface temperature at the

start of simulations

SnowDepth = 0.0 # meters, average depth of snow at the start of

simulations

SnowTemperature = -5 # C, average

SnowLiquidFractionInitial = 0 # 0 = dry snow (no liquid), 1 = liquid

water (no ice/snow)

#[WEATHER FORECAST FILE]

WeatherFile = "training_2020_small.csv" #"weather_data_trendi.csv"

#"weather_data_vakio.csv" #"weather_data_2pts.csv"

#"weather_data_no_snow.csv" # Remember double quotations (") on both

sides; format as in Ilmatieteenlaitos

https://www.ilmatieteenlaitos.fi/havaintojen-lataus, Turku

Artukainen

TimeStepSizeMinutes = 60 # 60 = 1 hour etc; smaller gives better

accuracy and stabiilty but takes longer to execute

-*- coding: utf-8 -*-

import numpy as np

import pandas as pd

from scipy.optimize import fsolve # required library

import sympy as sp

import scipy

import matplotlib.pyplot as plt

global Sstar_interm

global Sstar_prev

Arrays

Initialize solution arrays

X_sol = []

T_1 = []

 141

T_2 = []

T_3 = []

T_S = []

T_ground_1 = [] # This is the bulk ground temperature at bottom (for

horizontal heat conduction)

T_ground_2 = [] # This is the bulk ground temperature at mid (for

horizontal heat conduction)

T_ground_3 = [] # This is the bulk ground temperature at

masuunihiekka layer

D_snow = [] #

mSnowPackTot = []

LiquidFraction = []

energyConsumption = []

Liquid_dTPrev = 0

Sstar_prev = 0

Sstar_interm = 0

meltinG_exp = 0.1

CloudFactorCorrection = 1

WindFactorCorrection = 1

Natural constants

StefanBoltzmann = 5.6704*10**(-8) # W/m^2/K^4

def GetConfiguration():

 with open("turfheat.ini") as file:

 lines = [line.rstrip() for line in file]

 for l in lines:

 ll = l.split("#", 1)[0]

 lll = ll.split("[", 1)[0]

 if len(lll)>0:

 exec(lll,globals())

def isnumber(x):

 try:

 float(x)

 return float(x)

 except:

 return np.nan

def ReadCsv(WeatherFile):

 df = pd.read_csv(WeatherFile, sep=';', decimal='.')

 if len(df) == 2: # First and last points given -> apply linear

interpolation

 df["datestrH"] = df["Year"].astype(str) + '-' +

df["Month"].astype(str).str.zfill(2) + '-' +

df["Day"].astype(str).str.zfill(2) + ' ' + df["Time"]

 df["datestr"] = df["Year"].astype(str) + '-' +

df["Month"].astype(str).str.zfill(2) + '-' +

df["Day"].astype(str).str.zfill(2)

 df["date"] = pd.to_datetime(df['datestrH'], format='%Y-%m-%d

%H:%M')

 ddf = df.set_index('date').resample('60T').interpolate()

 ddf["datestr"] = ddf.index.strftime('%Y-%m-%d')

 ddf["datestrH"] = ddf.index.strftime('%Y-%m-%d %H:%M')

 ddf["date"] = ddf.index

 ddf["index"] = range(0,len(ddf))

 df = ddf.set_index("index")

 else:

 df["datestr"] = df["Year"].astype(str) + '-' +

df["Month"].astype(str) + '-' + df["Day"].astype(str)

 142

 df["datestrH"] = df["Year"].astype(str) + '-' +

df["Month"].astype(str).str.zfill(2) + '-' +

df["Day"].astype(str).str.zfill(2) + ' ' + df["Time"]

 df["date"] = pd.to_datetime(df['datestrH'], format='%Y-%m-%d

%H:%M')

 alkupv = df["datestr"].iloc[0]

 loppupv = df["datestr"].iloc[-1]

 df["AirTemperature"] = pd.to_numeric(df['Air Temperature

(degC)'],errors='coerce')

 df["DeltaT"] = pd.to_numeric(df['DeltaT (C)'],errors='coerce')

 df["LiquidFlowRate"] = pd.to_numeric(df['LiquidFlowRate

(l/s)'],errors='coerce')

 df["WindVelocity"] = pd.to_numeric(df['Wind Speed

(m/s)'],errors='coerce')

 #df["SnowDepth"] = pd.to_numeric(df['Lumensyvyys

(cm)'],errors='coerce')/100 # conversion cm -> m

 #df["SnowDepth"] = [0]*len(df)

 df["SnowDepth"] = pd.to_numeric(df['Snow Depth

(cm)'],errors='coerce')

 #df["SnowDepth"][df["SnowDepth"]<0] = 0

 df.loc[df["SnowDepth"]<0,'SnowDepth'] = 0

 df["Precipitation"] = pd.to_numeric(df['Precipitation Amount

(mm)'],errors='coerce')/1000 # conversion mm -> m

 df["CloudCover"] = pd.to_numeric(df["Cloud Amount

(1/8)"],errors='coerce')/8 # conversion to [0 .. 1] , 0 = no clouds,

1 = fully clouded

 #df["RelativeHumidity"] = pd.to_numeric(df["Suhteellinen kosteus

(%)"], errors='coerce')/100 # conversion to [0 ... 1]

 df["RelativeHumidity"] = [0.5]*len(df)

 # df.groupby(['group_col1', 'group_col2'])['value_col'].mean()

 #df_daily = df.groupby(pd.Grouper(freq='D', key='date')).mean()

 df_daily = df.groupby(['datestr'])[['AirTemperature',

'WindVelocity', 'SnowDepth', 'Precipitation', 'CloudCover',

'RelativeHumidity', 'Month', 'Day', 'DeltaT',

'LiquidFlowRate']].mean()

 df = df[["date", 'AirTemperature', 'WindVelocity', 'SnowDepth',

'Precipitation', 'CloudCover', 'RelativeHumidity', 'Month', 'Day',

'DeltaT', 'LiquidFlowRate']]

 #ddf = df.set_index('date').resample('60T').interpolate()

 interpolaatio_min = str(int(TimeStepSizeMinutes)) + 'T'

 ddf =

df.set_index('date').resample(interpolaatio_min).interpolate()

 #ddf = df.set_index('date').resample('5T').interpolate()

 return ddf, df_daily, alkupv, loppupv

def CalculateGroundTemperature(depth_z, T_air, T_g_prev, k, rho, cp,

f, depth_snow, dt):

 # Rankinen, K., Karvonen, T., & Butterfield, D. (2004).

 # A simple model for predicting soil temperature in snow-covered

and seasonally frozen soil:

 # model description and testing. Hydrology and Earth System

Sciences, 8(4), 706-716.

 # Equations (12)-(13)

 kerr = (dt*k)/(rho*cp*np.power(2*depth_z,2))

 #T = (T_g_prev+kerr*(T_air-T_g_prev))*np.exp(-f*depth_snow)

 T = T_g_prev+kerr*(T_air-T_g_prev)*np.exp(f*depth_snow)

 143

 return T

def CalculateConvection_h(Plate_x, Plate_y, v):

 # Sartori, E. (2006). Convection coefficient equations for

forced air flow over flat surfaces. Solar Energy, 80(9), 1063-1071.

 # Equation (9)

 L_eff = (4*Plate_x*Plate_y)/(2*Plate_x+2*Plate_y) #

Characteristic length for flat rectangular plate

 h = 5.74*np.power(v, 0.8)/np.power(L_eff,0.2)

 return h

def CalculateSkyTemperature(T_amb, cloudiness_ratio):

 # Oliveti, G., Arcuri, N., & Ruffolo, S. (2003). Experimental

investigation on thermal radiation exchange of horizontal outdoor

surfaces. Building and Environment, 38(1), 83-89.

 # Equation (10)

 # Temperatures in CELSIUS!!

 # k = cloudiness_index/8

 # T_sky = −29 + 1.09*T_amb − 19.9*k

 ClearSkyIndex = (1-cloudiness_ratio)

 T_sky = -29 + 1.09*T_amb -19.9*ClearSkyIndex

 # Whillier model

 #T_sky = T_amb - 6

 return T_sky

def CalculateSkyEmissivity(T_amb, cloudiness_ratio):

 # On the sky temperature models and their influence on buildings

energy performance: A critical review. Luca Evangelisti, Claudia

Guattari, Francesco Asdrubali

 Tamb = T_amb + 273.15 # To Kelvin

 # Clear sky emissivity (Idso and Jackson 1969, Ohio; ibid Table

1)

 eclearsky = 1-(0.261*np.exp(-7.77*0.0001*(273.15-Tamb)*(273.15-

Tamb)))

 # Kasten and Czeplak 1980 ε sky = ε clear−sky + 0 . 8(1 − ε

clear−sky) CF; ibid Table 3

 esky = eclearsky + 0.8*(1-eclearsky)*cloudiness_ratio

 return esky

def CalculateGroundEmissivity(snowDepth):

 if snowDepth < 0.001:

 e = TurfSurfaceEmissivity # no snow = dark green

 elif (snowDepth >= 0.0001) & (snowDepth < 0.01):

 scaling_ratio = (snowDepth-0.0001)/(0.01-0.0001) # = 0 if

snowDepth <= 0.001, 1 if snowDepth >= 0.005

 e = scaling_ratio*SnowSurfaceEmissivity+(1-

scaling_ratio)*TurfSurfaceEmissivity

 else:

 e = SnowSurfaceEmissivity # fully covered by white snow

 return e

def InitializeSnow(T,Area,LF):

 # Snow is initially dry at a given temperature

 m_snow = (1-LF)*Area*SnowDepth*SnowDensity

 m_water = LF*Area*SnowDepth*WaterDensity

 144

 U_snow_latent = -WaterHeatOfFusion*m_snow*1000 # [J]

 U_water_latent = WaterHeatOfFusion*m_water*1000 # [J]

 U_latent = U_water_latent + U_snow_latent

 U_snow_T = m_snow*SnowSpecificHeatCapacity*SnowTemperature #

[J], note that this is negative as SnowTemperature < 0

 U_water_T = m_water*WaterSpecificHeatCapacity*0 # = 0 as Water

in the snowpack is at 0 Celsius

 U_cp = U_snow_T + U_water_T

 # Net

 U_SnowEnergy = U_latent + U_cp

 return U_SnowEnergy

def CalculateSnowAndRainMassFluxes(T_air, Precipitation):

 # Utah Energy Balance Model + U.S. Army Corps of Engineers, 1956

 # Tarboton, D. G., & Luce, C. H. (1996). Utah energy balance

snow accumulation and melt model (UEB) (p. 63). Utah Water Research

Laboratory.

 T_a = 3

 T_b = -1

 if T_air >= T_a:

 Pr = Precipitation # All liquid

 Ps = 0

 elif (T_air < T_a) & (T_air > T_b):

 #Pr = Precipitation*(T_a-T_b)/(T_air-T_b)

 Ps = Precipitation*(T_a-T_air)/(T_a-T_b)

 Pr = (Precipitation-Ps)

 else:

 Ps = Precipitation

 Pr = 0

 return Pr, Ps # [m3/s]

def MeltOutFlowFromSnowPack(LiquidFraction, Area):

 # Melt outflow is a function of the liquid fraction, using

Darcy's law

 # Utah Energy Balance Snow Accumulation and Melt Model (UEB)

page 20/64

 # Ksat is the snow saturated hydraulic conductivity

 # S* is the relative saturation in excess of water retained by

capillary force, Male and Gray (1981, p. 400, eqn 9.45).

 global Sstar_interm

 K_sat = SnowSaturatedHydraulicConductivity # [m/s]

 Lc = SnowLiquidHoldingCapacity # [-]

 Lf = LiquidFraction # [-]

 rho_i = IceDensity

 rho_s = SnowDensity

 rho_w = WaterDensity

 if (Lf > Lc) & (Lf < 0.99):

 S_star_curr = ((Lf/(1-Lf))-Lc)/((rho_w/rho_s)-(rho_w/rho_i)-

Lc)

 else:

 S_star_curr = 0 # water is retained/embedded/diffused in

snow

 S_star = meltinG_exp*Sstar_prev+(1-meltinG_exp)*S_star_curr

 #M_r = K_sat*S_star^3 # [m/s]

 145

 M_r = K_sat*S_star*S_star*S_star # [m/s]

 V_out = M_r*Area # [m^3/s] volume flow rate of liquid water out

of snow pack, T = 0C

 m_out = rho_w*V_out # [kg/s]

 Q_out_kW = WaterHeatOfFusion*m_out # [kJ/s] = kW

 Q_out = 1000*Q_out_kW # [W]

 Sstar_interm = S_star

 return m_out, Q_out

def CalculateSolarHeating(MonthNumber, DayN, CloudCover):

 # Merkouriadi, I., Lepparanta, M., & Shirasawa, K. (2013).

Seasonal and annual heat budgets offshore the Hanko Peninsula, Gulf

of Finland. Boreal environment research.

 # Table lookup, Table 4. Sea surface heat balance (W m–2) in

Santala Bay in 2000.

 MonthNumber = round(MonthNumber) # just in case we're

interpolating

 ratio = 1-(1+(DayN-15)/15)/2 # in 1 ... 0 and 0.5 at middle

 cloudFactor = (1-CloudCover)+0.5 # CloudCover = 0 -> No clouds -

> cloudFactor = 1.5 = 150% average

 if MonthNumber == 1: # January

 q = 0.5*(5 + ratio*4 + (1-ratio)*9) # W/m2, assuming 5 W/m2

is on 15th January and interpolation to nearest month averages...

 elif MonthNumber == 2:

 q = 0.5*(9 + ratio*5 + (1-ratio)*53)

 elif MonthNumber == 3:

 q = 0.5*(53 + ratio*9 + (1-ratio)*116)

 elif MonthNumber == 4:

 q = 0.5*(116 + ratio*53 + (1-ratio)*163)

 elif MonthNumber == 5:

 q = 0.5*(163 + ratio*116 + (1-ratio)*153)

 elif MonthNumber == 6:

 q = 0.5*(153 + ratio*163 + (1-ratio)*114)

 elif MonthNumber == 7:

 q = 0.5*(114 + ratio*153 + (1-ratio)*95)

 elif MonthNumber == 8:

 q = 0.5*(95 + ratio*114 + (1-ratio)*58)

 elif MonthNumber == 9:

 q = 0.5*(58 + ratio*95 + (1-ratio)*16)

 elif MonthNumber == 10:

 q = 0.5*(16 + ratio*58 + (1-ratio)*3)

 elif MonthNumber == 11:

 q = 0.5*(3 + ratio*16 + (1-ratio)*4)

 elif MonthNumber == 12:

 q = 0.5*(4 + ratio*3 + (1-ratio)*5)

 return CloudFactorCorrection*q*cloudFactor/24

-----------------------MAIN CODE : MASS AND ENERGY BALANCES ------

def CalculateSnowFall(T_air, Precipitation, T_snow):

 # T_snow is the snow pack temperature from previous time step

 # Precipitation is in m3/s

 # (1) : Rainfall and snowfall

 146

 Pr, Ps = CalculateSnowAndRainMassFluxes(T_air, Precipitation) #

[m3/s]

 # (2) : Liquid mass flux and heat flux

 m_liquid_in = Pr*WaterDensity # [kg/s]

 Q_rain = m_liquid_in*WaterSpecificHeatCapacity*(T_air-T_snow) #

[W] <<---- liquid rain TYPICALLY warms up snow, but not necessarily

 # (3) :

 m_snow_in = Ps*SnowDensity # [kg/s]

 Q_snow_latent = -m_snow_in*WaterHeatOfFusion*1000 # [W]

 Q_snow_T = m_snow_in*SnowSpecificHeatCapacity*(T_air-T_snow) #

[W]

 Q_snow = Q_snow_latent + Q_snow_T # [W]

 return m_snow_in, m_liquid_in, Q_snow, Q_rain

def SnowMeltBalance(mTot_prev, U_snow_E_prev, Q_net, T_snow_prev,

T_air, Area, dt, m_snowfall_in, m_rainfall_in, Lf_prev):

 # (1) : Mass of liquid and solid water from previous time

 mWaterPrev = mTot_prev*Lf_prev

 mSnowPrev = mTot_prev*(1-Lf_prev)

 # (2) : Current masses of liquid and solid, without energy

effect, which will have to be resolved (new liquid fraction)

 # Current mass of snow = previous mass + snowfall - snow melted

 mSnowCurr = mSnowPrev + m_snowfall_in*dt

 # Update snowpack temperature based on mass-weighted average

 T_snow_backup = T_snow_prev

 T_snow_prev =

min(0,(mSnowPrev*T_snow_prev+(m_rainfall_in+m_snowfall_in)*T_air)/(m

SnowPrev + (m_snowfall_in + m_rainfall_in)))

 U_melt = mSnowCurr*WaterHeatOfFusion*1000 # J > 0

 # The (negative) heat required to freeze all the water

equivalence at 0C [J]

 # Current mass of water is previous mass of water plus rainfall

 mWaterCurr = mWaterPrev + m_rainfall_in*dt #- m_melt_out*dt #

m_melt_out < 0 by definition

 U_freeze = mWaterCurr*WaterHeatOfFusion*1000 # J

 # Total mass of water (frozen/liquid) in the bed

 mTotCurr = mSnowCurr + mWaterCurr

 # Net change in snow pack energy (positive or negative)

 U_net_in = Q_net*dt # J, as [Q_net] = W

 # Final energy state of snow pack

 U_new = U_snow_E_prev + U_net_in # J

 # Work out new liquid fraction by U_new and incoming snow/water

masses, and the corresponding snowpack temperature

 if U_net_in < -U_freeze: # The entire snowpack is frozen

 U_diff = U_net_in-U_freeze # U_freeze is spent on freezing

the liquid water, U_diff is available for cooling the snowpack

 dT_snow = U_diff/(mTotCurr*SnowSpecificHeatCapacity)

 T_new = T_snow_prev + dT_snow

 147

 LiquidFrac = 0

 elif (U_net_in >= -U_freeze) & (U_net_in <= 0): # Some but not

all of liquid water is frozen

 T_new = 0 # snow pack is at zero temperature since

multiphase

 m_frozen = min(mWaterCurr,

abs(U_net_in)/(WaterHeatOfFusion*1000)) # J

 mWaterCurr = mWaterCurr - m_frozen

 mSnowCurr = mSnowCurr + m_frozen

 mTotCurr = mSnowCurr + mWaterCurr

 LiquidFrac = mWaterCurr/mTotCurr

 elif (U_net_in > 0) & (U_net_in <= U_melt): # Some but not all

of snow is molten

 T_new = 0 # snow pack is at zero temperature since

multiphase

 m_molten = min(mSnowCurr,

abs(U_net_in)/(WaterHeatOfFusion*1000)) # J

 mWaterCurr = mWaterCurr + m_molten

 mSnowCurr = mSnowCurr - m_molten

 mTotCurr = mSnowCurr + mWaterCurr

 LiquidFrac = mWaterCurr/mTotCurr

 elif (U_net_in > U_melt): # Snowpack fully molten - T > 0,

LiquidFraction = 1

 U_excess = U_net_in - U_melt # Energy left for warming up

fully liquid water

 dT_snow = U_excess/(mTotCurr*SnowSpecificHeatCapacity)

 #T_new = T_snow_prev + dT_snow

 T_new = T_air # no need to update -> no snow!

 LiquidFrac = 1

 # (4) : Change of depth (only by snowfall minus melting, not

liquid inflow)

 mSnowNew = (1-LiquidFrac)*mTotCurr

 D_snow_new = (mSnowNew/SnowDensity)/Area

 return T_new, LiquidFrac, D_snow_new, U_new, mTotCurr

def MassAndEnergyBalanceEquations(x, *data):

 # ----------------- Unpack parameters (data) -------------------

 #A_xy, A_1_sides, A_2_sides, A_3_sides, V_1, V_2, V_3, m_1, m_2,

m_3, rho_1, rho_2, #12

 #rho_3, cp_1, cp_2, cp_3, k_1, k_2, k_3, dx_12, dx_23, k_12,

k_23, alpha_1, alpha_2, alpha_3, MonthN, CloudCover, #28

 #WindVelocity, Precipitation, RelativeHumidity, AirTemperature,

U_snow_E, epsi, Tsky, #35

 #Qsun, h, z_depth_1, T_g_next_1, z_depth_2, T_g_next_2, T1s,

T2s, T3s, TSs, SnowDs, LF_curr, #47

 #mdotfluid, Tf_in, Tf_out = data #50

 dt, A_xy, A_1_sides, A_2_sides, A_3_sides, V_1, V_2, V_3, m_1,

m_2, m_3, rho_1, rho_2, rho_3, cp_1, cp_2, cp_3, k_1, k_2, k_3,

dx_12, dx_23, k_12, k_23, alpha_1, alpha_2, alpha_3, MonthN,

CloudCover, WindVelocity, Precipitation, RelativeHumidity,

AirTemperature, U_snow_E, epsi, Tsky, Qsun, h, z_depth_1,

T_g_next_1, z_depth_2, T_g_next_2, z_depth_3, T_g_next_3, T1s, T2s,

T3s, TSs, SnowDs, LF_curr, massSnowPack_curr, mdotfluid, Tf_delta =

data

 148

 (T1e, T2e, T3e, SnowWaterMass_new, Snow_Depth_new,

Liquid_Fraction_new, TSe) = x # Temperatures in layers: bottom (1),

mid (2), turf (3), and

 # ----------------- EXTERNAL LOOP: BOTTOM AND MIDDLE

TEMPERATURES -------

 # Layer 1 - Heating level

 Q12 = (k_12/dx_12)*A_xy*(T1s-T2s)

 eq1 = m_1*cp_1*(T1e-T1s)/dt - mdotfluid*LiquidCp*Tf_delta + Q12

+ (k_1/np.sqrt(np.pi*alpha_1*dt))*(T1s-T_g_next_1)*A_1_sides +

(k_1/np.sqrt(np.pi*alpha_1*dt))*(T1s-T_g_next_3)*A_xy

 # Layer 2 - Gravel fill

 Q23 = (k_23/dx_23)*A_xy*(T2s-T3s)

 eq2 = m_2*cp_2*(T2e-T2s)/dt - Q12 + Q23 +

(k_2/np.sqrt(np.pi*alpha_2*dt))*(T2s-T_g_next_2)*A_2_sides

 # Layer 3 - Turf

 if (SnowDs < 0.0001) & (Precipitation<0.000000001): # No snow,

no rain - no need for internal iterations

 Q34 = 0

 Qcond = 0

 #Qrad = epsi*StefanBoltzmann*((T3s+273.15)^4-

(Tsky+273.15)^4)*A_xy # < 0

 Qrad = -epsi*StefanBoltzmann*((T3s+273.15)**4-

(Tsky+273.15)**4)*A_xy

 Qconv = h*A_xy*(AirTemperature-T3s) # < 0 if T_air < T3e

 QsolarAvg = Qsun*A_xy # > 0

 #LF_curr_target = 0

 eq3 = m_3*cp_3*(T3e-T3s)/dt - Q23 + Q34 - Qconv - Qrad -

QsolarAvg

 #eq4 = 0

 #eq5 = 0

 #eq6 = Liquid_Fraction_new-LF_curr_target

 #eq7 = 0

 eq4 = SnowWaterMass_new - 0

 eq5 = Snow_Depth_new - 0

 eq6 = Liquid_Fraction_new - 0

 eq7 = TSe - 0

 return [eq1, eq2, eq3, eq4, eq5, eq6, eq7]

 # Layer 3 - Turf with snow cover

 D_snow_curr = SnowDs

 dx_34 = (SurfaceSectionThickness+D_snow_curr)/2

 k_34 =

((SurfaceSectionThickness/2)*k_3+(D_snow_curr/2)*SnowThermalConducti

vity)/dx_34

 Q34 = (k_34/dx_34)*A_xy*(T3s-TSe)

 Qrad = 0

 Qconv = 0

 QsolarAvg = 0

 eq3 = m_3*cp_3*(T3e-T3s)/dt - Q23 + Q34 - Qconv - Qrad -

QsolarAvg

 # Layer 4 - Snowpack

 # Heat fluxes to atmosphere

 Qconv = h*A_xy*(AirTemperature-TSs) # < 0 if T_air < T_snow

 149

 Qrad = -epsi*StefanBoltzmann*((TSs+273.15)**4-

(Tsky+273.15)**4)*A_xy # < 0

 QsolarAvg = Qsun*A_xy # > 0

 # Snowfall and rainfall fluxes

 m_snow_in, m_liquid_in, Q_snow, Q_rain =

CalculateSnowFall(AirTemperature, Precipitation, TSs)

 # Power flow [W] to/from snowpack by heating / cooling

 dQsnow = QsolarAvg + Qconv + Qrad + Q34 #+ Q_snow + Q_rain #+

Q_out

 # Work out thermal balance (new temperature, liquid fraction,

snow depth and internal energy)

 T_new, LiquidFraction_new, D_snow_new, U_snow_new, mTotCurr =

SnowMeltBalance(massSnowPack_curr, U_snow_E, dQsnow, TSs,

AirTemperature, A_xy, dt, m_snow_in, m_liquid_in, LF_curr)

 if (LiquidFraction_new > SnowLiquidHoldingCapacity) &

(D_snow_new < 0.005):

 #if (LiquidFraction_new > 99999999):

 # if rainfall is all liquid, then we assume everything is

transported out of the field during the time step (no water pools)

 mAfterMeltingTot = 0

 D_snow_new_after_melt = 0

 #mAfterMeltingTot = 0.75*SnowWaterMass_new

 #LiquidFraction_new = 0.75*LiquidFraction_new

 #D_snow_new_after_melt = max(0,Snow_Depth_new)

 #D_snow_new_after_melt = (mAfterMeltingTot/SnowDensity)/A_xy

 else:

 mAfterMeltingTot, D_snow_new_after_melt =

CalculateMelting(mTotCurr, LiquidFraction_new, A_xy, dt)

 #sol = [Q12, Q23, Q34, Qcond, Qrad, Qconv, QsolarAvg,

SnowWaterMass_new, Snow_Depth_new, m_snow_in, m_liquid_in,

LiquidFraction_new, mAfterMeltingTot, D_snow_new_after_melt]

 # Update output variables

 eq4 = SnowWaterMass_new-mAfterMeltingTot

 eq5 = Snow_Depth_new - max(0,D_snow_new_after_melt)

 eq6 = Liquid_Fraction_new-LiquidFraction_new

 eq7 = TSe-T_new

 return [eq1, eq2, eq3, eq4, eq5, eq6, eq7]

def CalculateMelting(mTotCurr, LiquidFraction, Area, dt):

 #mSnow = (1-LiquidFraction)*mTotCurr

 m_out, Q_out = MeltOutFlowFromSnowPack(LiquidFraction, Area)

 mSnowInit = (1-LiquidFraction)*mTotCurr

 mWaterInit = LiquidFraction*mTotCurr

 m_out_in_time_step = m_out*dt

 mSnowAfterMeltingTot = max(0, mSnowInit - m_out_in_time_step) #

this is less than mSnowInit

 mTotNew = mSnowAfterMeltingTot + mWaterInit

 LiquidFractionNew = mWaterInit/mTotNew

 150

 D_snow_new_after_melt = (mTotNew/SnowDensity)/Area

 return mTotNew, D_snow_new_after_melt

--

-

if __name__ == "__main__":

 #global Sstar_interm

 #global Sstar_prev

 GetConfiguration()

 # The below values are from parameter optimization carried out

in Matlab ...

 x_in_0 = [0.21004,0.00012923,0.61776,0.20649,-

0.14678,0.010003,50.0347,992.7121,0.84647,1.4996]

 # ... and this is where the parameters are fed:

 SnowSurfaceEmissivity = x_in_0[0] # 0.28026312 #

https://www.tandfonline.com/doi/abs/10.1080/01431169308904420 : 0.7

... 0.92

 SnowSaturatedHydraulicConductivity = x_in_0[1] #0.00672378 #

m/s, Reference 25 m/h is 0.0069444, see Table 3 in Liu, Y., et al.

(2019). Exploration of the Snow Ablation Process in the Semiarid ...

Water, 11(5), 1058.

 SnowLiquidHoldingCapacity = x_in_0[2] # 0.44091809 # Utah Energy

Balance model default 0.05, see Table 3 in Liu, Y., et al. (2019).

Exploration of the Snow Ablation Process in the Semiarid ... Water,

11(5), 1058.

 TurfSurfaceEmissivity = x_in_0[3] #0.59648589 # Winter Football:

"The emissivity of the surface, which in this case is the artificial

pitch made out of polyethylene has an emissivity of 0.92

 EmpiricalGroundDampingFactor = x_in_0[4] # 1/m, "f" value

between -2 ... -7, see Rankinen, K., Karvonen, T., & Butterfield, D.

(2004). A simple model for predicting soil temperature in snow-

covered and seasonally frozen soil: model description and testing.

Hydrology and Earth System Sciences, 8(4), 706-716.

 meltinG_exp = x_in_0[5]

 SnowDensity = x_in_0[6]

 IceDensity = x_in_0[7]

 CloudFactorCorrection = x_in_0[8]

 WindFactorCorrection = x_in_0[9]

 df, df_daily, alkupv, loppupv = ReadCsv(WeatherFile) # outputs

daily averages

 N_all = len(df)

 N_days = len(df_daily)

 energyConsumption = [0]*len(df) # initialization of energy

consumption

 # --------------------------------- TIME STEP SIZE -------------

 #dt = 60*60 # time step size seconds

 #dt = 5*60 # time step size seconds

 dt = TimeStepSizeMinutes*60

 # ---------------------- INTERMEDIATE CONSTANTS ----------------

 151

 # LAYERS: bottom = 3 (gravel+heating), middle = 2 (gravel), 1 =

top surface (turf)

 # Areas

 A_xy = FieldWidth*FieldLength

 A_1_sides = BottomSectionThickness*FieldLength*2 +

BottomSectionThickness*FieldWidth*2

 A_2_sides = MidSectionThickness*FieldLength*2 +

MidSectionThickness*FieldWidth*2

 A_3_sides = SurfaceSectionThickness*FieldLength*2 +

SurfaceSectionThickness*FieldWidth*2

 dataAreas = (dt, A_xy, A_1_sides, A_2_sides, A_3_sides)

 # Volumes

 V_1 = A_xy*BottomSectionThickness

 V_2 = A_xy*MidSectionThickness

 V_3 = A_xy*SurfaceSectionThickness

 dataVolumes = (V_1, V_2, V_3)

 # Masses and densities

 m_1 = ThermalElementVoidFraction*V_1*LiquidDensity+(1-

ThermalElementVoidFraction)*V_1*GravelSectionDensity

 m_2 = V_2*GravelSectionDensity

 m_3 = V_3*TurfSectionDensity

 rho_1 = m_1/V_1

 rho_2 = GravelSectionDensity

 rho_3 = TurfSectionDensity

 dataMrho = (m_1, m_2, m_3, rho_1, rho_2, rho_3)

 # Effective specific heat capacities

 cp_1 = ThermalElementVoidFraction*LiquidCp+(1-

ThermalElementVoidFraction)*GravelSectionCp

 cp_2 = GravelSectionCp

 cp_3 = TurfSectionCp

 # Distance-weighted effective thermal conductivity between

layers

 k_1 = ThermalElementVoidFraction*LiquidThermalConductivity+(1-

ThermalElementVoidFraction)*GravelThermalConductivity

 k_2 = GravelThermalConductivity

 k_3 = TurfSectionThermalConductivity

 dx_12 = (BottomSectionThickness+MidSectionThickness)/2

 dx_23 = (MidSectionThickness+SurfaceSectionThickness)/2

 k_12 =

((BottomSectionThickness/2)*k_1+(MidSectionThickness/2)*k_2)/dx_12

 k_23 =

((MidSectionThickness/2)*k_2+(SurfaceSectionThickness/2)*k_3)/dx_23

 # Thermal diffusivities (alpha)

 alpha_1 = k_1/(rho_1*cp_1)

 alpha_2 = k_2/(rho_2*cp_2)

 alpha_3 = k_3/(rho_3*cp_3)

 dataCpKAlpha = (cp_1, cp_2, cp_3, k_1, k_2, k_3, dx_12, dx_23,

k_12, k_23, alpha_1, alpha_2, alpha_3)

 # Initialize solution arrays

 T_1 = [FieldBottomTemperature]

 T_1_curr = FieldBottomTemperature

 T_2 = [FieldMidpointTemperature]

 T_2_curr = FieldMidpointTemperature

 152

 T_3 = [FieldSurfaceTemperature]

 T_3_curr = FieldSurfaceTemperature

 T_S = [SnowTemperature]

 T_S_curr = SnowTemperature

 T_ground_1 = [FieldBottomTemperature] # This is the bulk ground

temperature at bottom (for horizontal heat conduction)

 T_g_curr_1 = FieldBottomTemperature

 T_ground_2 = [FieldMidpointTemperature] # This is the bulk

ground temperature at mid (for horizontal heat conduction)

 T_g_curr_2 = FieldMidpointTemperature

 T_ground_3 = [FieldBottomTemperature] # This is the bulk ground

temperature at masuunihiekka layer

 T_g_curr_3 = FieldBottomTemperature

 D_snow = [SnowDepth] #

 D_snow_curr = SnowDepth

 mSnowPack_curr = A_xy*SnowDepth*SnowDensity

 mSnowPackTot = [mSnowPack_curr]

 LiquidFraction = [SnowLiquidFractionInitial]

 LF_curr = SnowLiquidFractionInitial

 U_snow_E = InitializeSnow(SnowTemperature, A_xy, LF_curr)

 dTControl = [0]

 # Iterate

 tstep = 1

 t = 0

 while tstep < N_all:

 # (1) : Get current boundary conditions from weather data

 MonthN = df["Month"].iloc[tstep]

 DayN = df["Day"].iloc[tstep]

 CloudCover = float(df['CloudCover'].iloc[tstep])

 WindVelocity = float(df['WindVelocity'].iloc[tstep]) # m/s

 PrecipitationPerm2Perdt =

float(df['Precipitation'].iloc[tstep]) # meters of rain per m^2 area

during hour (Ilmatieteenlaitos)

 Precipitation = PrecipitationPerm2Perdt*A_xy/3600 # m3/s on

the entire field area

 RelativeHumidity = float(df['RelativeHumidity'].iloc[tstep])

 AirTemperature = float(df['AirTemperature'].iloc[tstep])

 pvm = df.index[tstep].strftime("%m/%d/%Y, %H:%M:%S")

 # (1.1) : Get control inputs

 LiquidTemperatureDeltaT = df["DeltaT"].iloc[tstep] # degrees

C

 LiquidMassFlowRate =

LiquidDensity*df["LiquidFlowRate"].iloc[tstep]/1000 # [kg/m3]*[m3/s]

= [kg/s]

 dataSnowAir = (MonthN, CloudCover, WindVelocity,

Precipitation, RelativeHumidity, AirTemperature, U_snow_E)

 # (2) : Update parameters

 # (2b) : Ground emissivity

 epsi = CalculateGroundEmissivity(D_snow_curr)

 # (2c) : Sky temperature and emissivity

 Tsky = CalculateSkyTemperature(AirTemperature, CloudCover)

 #esky = CalculateSkyEmissivity(AirTemperature, CloudCover)

 #Tsky = (273.15+AirTemperature)*np.power(esky,0.25)-273.15

 # (2d) : Sun average heating power

 Qsun = CalculateSolarHeating(MonthN, DayN, CloudCover)

 153

 # (2e) : Rainfall and snowfall (meters per unit time)

 # (2f) : Convection by wind

 h = WindFactorCorrection*CalculateConvection_h(FieldWidth,

FieldLength, WindVelocity)

 # (2h) : Ground continuum (bulk) temperature around the

field

 z_depth_1 = BottomSectionThickness/2 + MidSectionThickness +

SurfaceSectionThickness

 T_g_next_1 = CalculateGroundTemperature(z_depth_1,

AirTemperature, T_g_curr_1, k_1, rho_1, cp_1,

EmpiricalGroundDampingFactor, D_snow_curr, dt)

 z_depth_2 = MidSectionThickness/2 + SurfaceSectionThickness

 T_g_next_2 = CalculateGroundTemperature(z_depth_2,

AirTemperature, T_g_curr_2, k_2, rho_2, cp_2,

EmpiricalGroundDampingFactor, D_snow_curr, dt)

 z_depth_3 = BedTotalDepth/2

 T_g_next_3 = CalculateGroundTemperature(z_depth_3,

AirTemperature, T_g_curr_3, BlastFurnaceSlagThermalConductivity,

BlastFurnaceSlagDensity, GravelSectionCp,

EmpiricalGroundDampingFactor, D_snow_curr, dt)

 dataAmbient = (epsi, Tsky, Qsun, h, z_depth_1, T_g_next_1,

z_depth_2, T_g_next_2, z_depth_3, T_g_next_3)

 # (3) Collect current solution values as the reference to

the next iteration

 dataStart = (T_1_curr, T_2_curr, T_3_curr, T_S_curr,

D_snow_curr, LF_curr, mSnowPack_curr)

 # (4) Collect control inputs

 if (abs(MonthN-1)<0.1) & (DayN > 14):

 Liquid_dT = 15

 elif (abs(MonthN-2)<0.1):

 Liquid_dT = 10

 elif (abs(MonthN-3)<0.1) & (DayN < 16):

 Liquid_dT = 5

 else:

 Liquid_dT = 0

 if (Liquid_dT > 0) & (Precipitation > 0.0001) &

(AirTemperature < 1):

 Liquid_dT = 15

 Liquid_dT = 0

 Liquid_dTPrev = Liquid_dT

 dTControl.append(Liquid_dT)

 dataControl = (LiquidMassFlowRate, Liquid_dT) # <---- UPDATE

THESE IF TIME DEPENDENT CONTROLS!

 data = dataAreas + dataVolumes + dataMrho + dataCpKAlpha +

dataSnowAir + dataAmbient + dataStart + dataControl

 # (4) Work out energy balance and new temperatures

 x_init = (T_1_curr, T_2_curr, T_3_curr, mSnowPack_curr,

D_snow_curr, LF_curr, T_S_curr) # Temperatures in layers: bottom

(1), mid (2), turf (3), and

 amb = (AirTemperature, Qsun, epsi, Tsky, h, T_g_next_1,

T_g_next_2, T_g_next_3, Precipitation)

 X_sol.append((pvm,) + x_init + amb)

 154

 x1, x2, x3, x4, x5, x6, x7 =

scipy.optimize.fsolve(MassAndEnergyBalanceEquations, x_init,

args=data)

 Sstar_prev = Sstar_interm

 # (5) Update solutions

 T_g_curr_1 = T_g_next_1

 T_g_curr_2 = T_g_next_2

 T_g_curr_3 = T_g_next_3

 T_1_curr = x1

 T_2_curr = x2

 T_3_curr = x3

 mSnowPack_curr = x4

 D_snow_curr = x5

 LF_curr = x6

 T_S_curr = x7

 T_1.append(x1)

 T_2.append(x2)

 T_3.append(x3)

 mSnowPackTot.append(x4)

 D_snow.append(x5)

 LiquidFraction.append(x6)

 T_S.append(x7)

 # (5.1) Update energy consumption

 energyConsumption_curr =

LiquidMassFlowRate*LiquidCp*Liquid_dT*dt # [kg/s]*[J/kg/C]*[C]*[s] =

[J]

 energyConsumption[tstep-1] = energyConsumption_curr

 # (6) Proceed to next time step

 tstep = tstep + 1

 if (tstep % 1000) == 0:

 print(pvm + " ::: progress " +

str(round(100*tstep/N_all, 2)) + ' %')

d = np.array(D_snow)

d[d<0] = 0

df["d"] = d

fig, axz = plt.subplots(1, 1)

fig.set_size_inches((14, 8), forward=False)

#plt.plot(df["d"])

#plt.plot(df["SnowDepth"]/100)

#plt.show()

l1, = axz.plot(df.index, df["d"], '-', color='black')

l2, = axz.plot(df.index, df["SnowDepth"]/100, color='blue')

axz2 = axz.twinx()

l3, = axz2.plot(df.index, df["Precipitation"].cumsum(), '--',

color='crimson')

plt.legend([l1, l2, l3], ["Snow depth prediction [m]", "Snow depth

measured [m]", "Cumulative rainfall [m]"])

axz.grid()

axz.tick_params(axis='x', rotation=25)

plt.gca().ticklabel_format(axis='y', style='plain')

axz.tick_params(axis='y', colors='black')

axz.set_ylabel('[m]', color='k')

axz2.set_ylabel('[m]', color='crimson')

plt.savefig("Result0.png")

 155

dff =pd.DataFrame(X_sol,

columns=['Date','T_1','T_2','T_3','SMass','Depth','LiquidF','T_Snow'

,"AirT", "Qsun", "epsi", "Tsky", "h", "T_g_1", "T_g_2", "T_g_3",

"Precipitation"])

dff.to_csv('soln.csv',index=False,sep=';',decimal=',')

sulana = len(np.where(d<0.001)[0])

prossulana = np.round(100*sulana/len(d),1)

#plt.plot(d)

#plt.show()

TotalEnergyConsumption =

np.round(float(np.sum(energyConsumption)/3.6e+9),2)

fig, axs = plt.subplots(1, 1)

fig.set_size_inches((14, 8), forward=False)

#fig.tight_layout()

#plt.xticks(rotation=45, ha='right')

#fig.suptitle(alkupv + ' -- ' + loppupv + ' energiankulutus : ' +

str(TotalEnergyConsumption) + ' MWh, sulana: ' + str(prossulana) + '

% ajasta')

axs.plot(df.index, T_1, label = 'Slag')

axs.plot(df.index, T_2, label = 'Sand')

axs.plot(df.index, T_3, label = 'SBR turf')

axs.plot(df.index, df["AirTemperature"], '--', label = 'Air')

if np.max(d) > 0.0001:

 axs.plot(df.index, T_S, label = 'Snow')

axs.set_title('Temperatures [C]')

#axs[0].legend(loc='upper left')

axs.legend()

axs.grid()

axs.tick_params(axis='x', rotation=25)

axs.set_ylabel('[C]', color='k')

plt.gca().ticklabel_format(axis='y', style='plain')

plt.savefig("Result1.png")

#figManager = plt.get_current_fig_manager()

#figManager.window.showMaximized()

#axs[0,1].set_title('Lumi ja sade')

#prec1 = df["Precipitation"]*1000

#l1, = axs[0,1].plot(df.index, prec1, '--', color='blue')

#ax2 = axs[0,1].twinx()

#l2, = ax2.plot(df.index, 100*np.round(d,4), color='black')

#plt.legend([l1, l2], ["Sademäärä [mm/h]", "Lumen syvyys [cm]"])

#axs[0,1].grid()

#axs[0,1].tick_params(axis='x', rotation=25)

#plt.gca().ticklabel_format(axis='y', style='plain')

#axs[0,1].tick_params(axis='y', colors='black')

#axs[0,1].set_ylabel('[mm/h]', color='b')

#ax2.set_ylabel('[cm]', color='k')

fig, axs = plt.subplots(1, 1)

fig.set_size_inches((14, 8), forward=False)

#axs.set_title('We')

pilvi = np.array(df['CloudCover'])

pilvi[pilvi>1] = 1

l3, = axs.plot(df.index, 100*pilvi, '-', color='crimson')

ax3 = axs.twinx()

tuuli = np.array(df['WindVelocity'])

l4, = ax3.plot(df.index, tuuli, '-', color='black')

plt.legend([l3, l4], ["Cloudiness [%]", "Wind speed [m/s]"])

axs.grid()

 156

axs.tick_params(axis='x', rotation=25)

axs.set_ylabel('[%]', color='crimson')

ax3.set_ylabel('[m/s]', color='black')

plt.savefig("Result2.png")

#axs[1,1].set_title('Lämmityksen ohjaus')

##deltaT = np.array(df['DeltaT'])

#deltaT = np.array(dTControl)

#fr = np.array(df["LiquidFlowRate"])

#l5, = axs[1,1].plot(df.index, deltaT, color='magenta')

#ax4 = axs[1,1].twinx()

#l6, = ax4.plot(df.index, fr, '--', color='darkgreen')

#plt.legend([l5, l6], ["Lämpötilaero (C)", "Tilavuusvirta [l/s]"])

#axs[1,1].grid()

#axs[1,1].tick_params(axis='x', rotation=25)

##axs[1,1].tick_params(axis='y', colors='magenta')

#axs[1,1].set_ylabel('[C]', color='magenta')

#ax4.set_ylabel('[l/s]', color='darkgreen')

#plt.savefig("Result.png")

#plt.pause(0.5)

#figManager = plt.get_current_fig_manager()

#figManager.window.showMaximized()

#plt.show()

all_done = 1

 157

7.9 Appendix H – General Guidance to Project Code
Main Code Simulation

The objective of the code is to predict the accumulation of snow on the field

and calculate the subsequent melting and energy consumption.

All of the initial values, such as the main dimensions of the field, material

properties of the soil and snow, and heating fluid parameters are defined in

the ′𝑡𝑢𝑟𝑓ℎ𝑒𝑎𝑡′ configuration file. This is also where the input weather file and

the time step size are controlled. These are important functions when

carrying out a sensitivity analysis, where the stability of the prediction for

different weather data and time step sizes must be validated.

The ′𝐹𝑢𝑡𝑢𝑟𝑒_𝑊𝑒𝑎𝑡ℎ𝑒𝑟. 𝑝𝑦′ file is where the main calculations are carried out.

The weather parameters are extracted from the CSV file, and formatting and

unit conversions are carried out to produce the desired input for the

calculation. Functions are defined for the calculations of ground temperature,

convection, sky temperature, sky emissivity, ground emissivity and snow and

rain mass fluxes. One of the new additions to the code is a set of conditions

which control the soil properties, namely density, specific heat capacity and

thermal conductivity based on the average water content in the soil. Melt

outflow and solar heating are also defined here, providing all the values

required in the following calculations.

Snowmelt balance is then solved, providing the change in snow depth at

each time step. The mass and energy balance calculations split the

equations into distinct sections for the 3 layers of soil – the heating level (1),

gravel fill (2), and the turf layer (3), as well the snowpack layer (4) on top.

The revised version now includes the evaporation and condensation heat

fluxes in the turf and snowpack layers. Some additional control for 𝑇𝑓_𝑑𝑒𝑙𝑡𝑎

is also included at the heating level to accommodate for the time delay in the

system reaching the required temperature. Control inputs are also present in

the following section for working out energy consumption.

The 𝑝𝑎𝑛𝑑𝑎𝑝𝑖𝑝𝑒𝑠 package for python was used to model time delay in the

network. After an empty network is created, the type and properties of the

circulating fluid can be modified. The elements of the network are created

starting with junctions, which act as connections between other components.

The number of junctions, initial values of pressure and temperature for the

calculation must be defined. The geodata parameter provides coordinates for

plotting the network. The pipe elements can then be added, connecting the

existing junctions. Dimensions, as well as roughness, pressure loss

coefficient and ambient temperature are also defined. The network has an

inlet and an outlet section which are larger in diameter, connected by a series

of smaller diameter loops. A pump connecting the first and the last junction

enforces a chosen pressure and temperature at the outlet side while

requesting a specific flowrate at the inlet side. The flow can then be

simulated for a defined number of time steps, and the resulting temperature

and pressure at the junctions are recorded to a pandas dataframe, which

 158

could be used for analysis of the data. The script can automatically generate

a schematic of the network and a plot displaying the evolution in temperature

at a selected junction over the length of the simulation. The line intersection

tool can be used to calculate the time required for the junction to reach the

requested temperature.

The final simulation plots can be shown in Figure 77 and Figure 78:

Figure 77: Predicted and Measured Snow Depth

Figure 78: Temperature Variations in Different Layers

Several variables are included for carrying out a sensitivity analysis, and

plots are produced showcasing the impact on the predicted snow depth.

Annotations are included in the script at all stages to identify the functions of

different parts of the code.

 159

Latin Hypercube Sampling (LHS)

The ‘𝐿𝐻𝑆_𝐿𝑜𝑜𝑝. 𝑝𝑦’ file is used to carry out this part of the analysis. A weather

file in the CSV format was imported into the code. From this, the maximum

and minimum values for each weather parameter could be extracted for any

length of time. These values set the limits for the random sampling. The

sampling was done so the weather parameters: Cloud Amount (1/8),

Precipitation Amount (𝑚𝑚), Precipitation Intensity (𝑚𝑚/ℎ), Snow Depth

(𝑐𝑚), Air Temperature (℃) and Wind Speed (𝑚/𝑠) were kept constant. The

control inputs: ∆𝑇 (℃) and the Liquid Flow Rate (𝑙/𝑠) were also fixed to

assess the impact they have on the final snow depth and the energy

consumption at the end of a 1-week simulation.

The sampler is initialised using a ′𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒′ parameter, which controls

the random number generator used. This parameter is used to control the

reproducibility of the results. A value of 𝑁𝑜𝑛𝑒 for the random state will

produce a new set of results each time the script is executed. Using an

integer instead will allow results to be reproducible over multiple simulations.

The most common values are between 0 and 42 and each one will generate

a different set of results.

Due to the random nature of the sampling, some additional constraints had to

be introduced to accommodate for the creation of unrealistic weather

scenarios, such as heavy rainfall when Cloud Amount = 0, or decreasing the

control inputs when snow cover is high.

Depending on the type of analysis being carried out, the values generated

can be used in their original state, where each cell will be assigned a value

sampled randomly from the limits assigned earlier. It is also possible to

modify the data, such that all the values in a particular column are constant,

or linear interpolation is caried out between the first and the last value. Both

options are present in the script and can be assigned to any of the weather

parameters and control inputs, or removed altogether, with small changes to

the code.

The results are saved to a CSV file, ‘𝐿𝐻𝑆_𝑅𝑒𝑠𝑢𝑙𝑡𝑠_𝐹𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑. 𝑐𝑠𝑣’ and

formatted to 1 column so that they could be inputted into the Main Code.

Figure 79: Formatted Weather Data

The script could be run for any number of iterations, and each time, a new

set of randomly sampled weather parameters and control inputs are

generated, which could be used to obtain the associated values of snow

depth and energy consumption at the end of the simulation.

 160

Decision Tree Model

The results file produced at the end of the Design of Experiments had to then

be processed before it could be implemented in the Regression Decision

Tree Model. The output file, taken from the ‘𝐿𝐻𝑆_𝐿𝑜𝑜𝑝. 𝑝𝑦’ script includes all 6

weather parameters and the two control inputs, alongside the addition of the

final snow depth and energy consumption. This can be found in the

′𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑇𝑟𝑒𝑒_𝐼𝑛𝑝𝑢𝑡3000. . 𝑐𝑠𝑣′ file. The first requirement for the cases was

that the snow depth was below 0.1 𝑐𝑚, which was identified as the threshold

at which the field could be considered in playing conditions. The other

requirement was below average energy consumption, which was averaged

out over 3000 simulations, producing a varied set of results which could then

be ranked. Cases where the energy consumption was below the average

value were assigned a rank of 1, and the rest of the cases were assigned 0.

This significantly simplified the training process as ranking the cases on a

scale between 0 and 1 provided the algorithm with a clear target variable to

optimise for.

Figure 80: Implementation of Ranking System

After this analysis was carried out, the ′𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑇𝑟𝑒𝑒. 𝑝𝑦′ script could be run.

The weather and control parameters were selected as the features (defined

by 𝑥) and the column containing the ranking was selected as the target

(defined by 𝑦). The data is then split up into a training and a testing set,

which can be modified using the parameter ′𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒′ within the

′𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡′ module. This scales between 0 and 1 and defines the

amount of data which will be used for the training of the model. The

′𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒′ parameter, also included in the decision tree initialiser, is

used to control the reproducibility of the results, as described in the Latin

Hypercube Sampling section. The resulting decision tree was plotted using

𝑤𝑒𝑏𝑔𝑟𝑎𝑝ℎ𝑣𝑖𝑧, and analysis was carried out to select the weather conditions

for which the highest amount of melting could be achieved for the smallest

energy expenditure. This was done by following the different branches of the

decision tree until a predicted value of 1 was reached and tracing back the

weather parameters which were selected for that branch.

 161

7.10 Appendix I – Simulation Full Worked Example

To run the main code (which calculates the heat and mass balance and

predicts snow depth).

Note: The file named ‘Future_Weather.py’ contains the main code, and when

it runs, it calculates the heat and mass balances and predicts snow depth at

each timestep. It outputs results of predicted against observed snow depth,

as well as energy use at each timestep.

Main Code: Future_Weather.py

Parameter Inputs: turfheat.ini

Weather Input File: training_2023_small.csv

PandaPipes Input File: Full_Scale_Network.py

Open Future_Weather.py (Full_Scale_Network.py, turfheat.ini and

training_2023_small.csv must be saved in same folder as the weather input

file is named within the parameter inputs file etc.).

Run code and 5 graphs will be plotted.

Graph 1: Schematic of Pipe Network

Graph 2: Temperature Variation at Exit Junction of Underground Pipes

Graph 3: Snow Depth Measured and Predicted Over Time (Result0)

Graph 4: Various Temperatures Over Time (Result1)

Graph 5: Cloudiness % and Wind Speed Over Time (Result2)

To replicate the results of the sensitivity analysis: parameter study.

Again open Future_Weather.py.

On line #681 copy the commented-out variables within the square brackets

[0.4].

This by default will run the variables study for Snow Liquid Holding Capacity.

Which will produce the original 5 graphs described in 1 with the addition of

Graph 3 and graph 4 which will be printed for each subsequent value for

snow liquid holding capacity.

For the desired hex graphs to be plotted lines #1099 to #1200 should be

commented in.

A variable study for all other variables named in lines #682 to #692 can be

done in a similar sense.

 162

All the lines relating to Snow Liquid Holding Capacity must be commented

out and the lines relating to the desired variable commented in.

Firstly, between line #699 and line #730.

Secondly, between line #928 and line #970.

To produce basic decision tree.

Design of Experiments/LHS: LHS_Loop.py

Weather Input File: Weather_Data_(Not_Formatted).csv

Parameter Inputs: turfheatDoE.ini

Intermediate .csv files produced as part of the LHS_Loop.py: (they are

only there to allow the code to run successfully and format the generated

weather data, so for the most part can be ignored).

Intermediate1.csv

Intermediate2.csv

Intermediate3.csv

LHS_Results.csv

LHS_Results_Formatted.csv

LHS Output /Decision Tree Input: Decision_Tree_Inputs_3000.csv

This is a . 𝑐𝑠𝑣 file which replicates real life weather data as a result of the

Design of Experiments/LHS. The weather data can be imported into all code

in the form of a . 𝑐𝑠𝑣 file, given it is formatted correctly. Lines #107 to #127 of

LHS_Loop.py format the results to the correct format.

Running a file through the ′𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝐹𝑜𝑟𝑚𝑎𝑡. 𝑝𝑦′ script will also convert the

data to 1 column (the correct format). Ensure also that there is no index

column, and that headings are correct. The end results should be similar to:

Figure 81: Weather Format End Result Example CSV

By running Decision_Tree.py a text file named TreeResults_3000.dot will

be produced, the contents which can be copied and pasted into the

website: http://www.webgraphviz.com/ to generate a decision tree.

1. To produce decision tree with complicated machine learning.

By running Decision_Tree.py but by commenting in lines #52 to #77 and

commenting out lines #16 to #48 a text file named

http://www.webgraphviz.com/

 163

ComplicatedResults_3000.dot will be produced, the contents which can be

copied and pasted into the website: http://www.webgraphviz.com/ to

generate a decision tree created from complicated machine learning

techniques.

Input Weather File: Complicated ML section input.csv

Outputs:

(X_test Values): Complicated ML X_Test Values.csv

(Predictions): Complicated ML Control Predictions.csv

Lines #80 to #89 should be commented on to replicate results of Cost

Analysis.

http://www.webgraphviz.com/

